7 research outputs found
An evaluation of training with an auditory P300 brain-computer interface for the Japanese Hiragana syllabary
Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications
Operation of a P300-based brain-computer interface in patients with Duchenne muscular dystrophy
Abstract A brain-computer interface (BCI) or brain-machine interface is a technology that enables the control of a computer and other external devices using signals from the brain. This technology has been tested in paralysed patients, such as those with cervical spinal cord injuries or amyotrophic lateral sclerosis, but it has not been tested systematically in Duchenne muscular dystrophy (DMD), which is a severe type of muscular dystrophy due to the loss of dystrophin and is often accompanied by progressive muscle weakness and wasting. Here, we investigated the efficacy of a P300-based BCI for patients with DMD. Eight bedridden patients with DMD and eight age- and gender-matched able-bodied controls were instructed to input hiragana characters. We used a region-based, two-step P300-based BCI with green/blue flicker stimuli. EEG data were recorded, and a linear discriminant analysis distinguished the target from other non-targets. The mean online accuracy of inputted characters (accuracy for the two-step procedure) was 71.6% for patients with DMD and 80.6% for controls, with no significant difference between the patients and controls. The P300-based BCI was operated successfully by individuals with DMD in an advanced stage and these findings suggest that this technology may be beneficial for patients with this disease