12 research outputs found

    Temperature- and pH-responsive schizophrenic copolymer brush coatings with enhanced temperature response in pure water

    Get PDF
    Novel brush coatings were fabricated with glass surface-grafted chains copolymerized using surface-initiated atom transfer radical polymerization (SI-ATRP) from 2-(2-methoxyethoxy)ethyl methacrylate (OEGMA188) and acrylamide (AAm), taken in different proportions. P(OEGMA188-co-AAm) brushes with AAm mole fraction >44% (determined with XPS and TOF-SIMS spectroscopy) and nearly constant with the depth copolymer composition (TOF-SIMS profiling) exhibit unusual temperature-induced transformations: The contact angle of water droplets on P(OEGMA188-co-AAm) coatings increases by ~45° with temperature, compared to 17−18° for POEGMA188 and PAAm. The thickness of coatings immersed in water and the morphology of coatings imaged in air show a temperature response for POEGMA188 (using reflectance spectroscopy and AFM, respectively), but this response is weak for P(OEGMA188-co-AAm) and absent for PAAm. This suggests mechanisms more complex than a simple transition between hydrated loose coils and hydrophobic collapsed chains. For POEGMA188, the hydrogen bonds between the ether oxygens of poly(ethylene glycol) and water hydrogens are formed below the transition temperature Tc_{c} and disrupted above Tc_{c} when polymer−polymer interactions are favored. Different hydrogen bond structures of PAAm include free amide groups, cis-trans-multimers, and trans-multimers of amide groups. Here, hydrogen bonds between free amide groups and water dominate at T Tc_{c}, such as cis-trans-multimers and trans-multimers of amide groups, can still be hydrated. The enhanced temperature-dependent response of wettability for P(OEGMA188-co-AAm) with a high mole fraction of AAm suggests the formation at Tc_{c} of more hydrophobic structures, realized by hydrogen bonding between the ether oxygens of OEGMA188 and the amide fragments of AAm, where water molecules are caged. Furthermore, P(OEGMA188-co-AAm) coatings immersed in pH buffer solutions exhibit a 'schizophrenic' behavior in wettability, with transitions that mimic LCST and UCST for pH = 3, LCST for pH = 5 and 7, and any transition blocked for pH = 9

    Temperature-controlled three-stage switching of wetting, morphology and protein adsorption

    No full text
    The novel polymeric coatings of oligoperoxide-graft-poly(4-vinylpyridine-co-oligo(ethylene glycol)ethyl ether methacrylate246) [oligoperoxide-graft-P(4VP-co-OEGMA246)] attached to glass were successfully fabricated. The composition, thickness, morphology, and wettability of resulting coatings were analyzed using X-ray photoelectron spectroscopy, ellipsometry, atomic force microscopy, and contact angle measurements, respectively. In addition, adsorption of the bovine serum albumin was examined with fluorescence microscopy. The thermal response of wettability and morphology of the coatings followed by that of protein adsorption revealed two distinct transitions at 10 and 23 °C. For the first time, three stage switching was observed not only for surface wetting but also for morphology and protein adsorption. Moreover, the influence of the pH on thermo-sensitivity of modified surfaces was shown

    Synthesis and postpolymerization modification of thermoresponsive coatings based on pentaerythritol monomethacrylate : surface analysis, wettability, and protein adsorption

    No full text
    Properties of novel temperature-responsive hydroxyl-containing poly(pentaerythritol monomethacrylate) (PPM) coatings, polymerized from oligoperoxide grafted to glass surface premodified with (3-aminopropyl)triethoxysilane, are presented. Molecular composition, chemical state, thickness, and wettability are examined with time of flight-secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), ellipsometry, and contact angle measurements, respectively. Temperature-induced changes in hydrophobicity of grafted PPM brushes are revealed by water contact angle and ellipsometric measurements. Partial postpolymerization modification of hydroxyl groups (maximum a few percent), performed with acetyl chloride or pyromellitic acid chloride, is demonstrated to preserve thermal response of coatings. Adsorption of bovine serum albumin to PPM brushes, observed with fluorescence microscopy, is higher than on glass in contrast to similar hydroxyl-containing layers reported as nonfouling. Enhanced and temperature-controlled protein adsorption is obtained after postpolymerization modification with pyromellitic acid chloride

    Temperature-controlled orientation of proteins on temperature-responsive grafted polymer brushes : poly(butyl methacrylate) vs poly(butyl acrylate) : morphology, wetting, and protein adsorption

    No full text
    Poly(n-butyl methacrylate) (PBMA) or poly(n-butyl acrylate) (PBA)-grafted brush coatings attached to glass were successfully prepared using atom-transfer radical polymerization "from the surface". The thicknesses and composition of the PBMA and PBA coatings were examined using ellipsometry and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively. For PBMA, the glass-transition temperature constitutes a range close to the physiological limit, which is in contrast to PBA, where the glass-transition temperature is around −55 °C. Atomic force microscopy studies at different temperatures suggest a strong morphological transformation for PBMA coatings, in contrast to PBA, where such essential changes in the surface morphology are absent. Besides, for PBMA coatings, protein adsorption depicts a strong temperature dependence. The combination of bovine serum albumin and anti-IgG structure analysis with the principal component analysis of ToF-SIMS spectra revealed a different orientation of proteins adsorbed to PBMA coatings at different temperatures. In addition, the biological activity of anti-IgG molecules adsorbed at different temperatures was evaluated through tracing the specific binding with goat IgG

    Temperature and pH dual-responsive coatings of oligoperoxide-graft-poly(N-isopropylacrylamide) : wettability, morphology, and protein adsorption

    No full text
    Poly(N-isopropylacrylamide) (PNIPAM) coatings attached to glass with novel approach involving polymerization from oligoperoxide grafted to surface with (3-aminopropyl)triethoxysilane exhibit not only temperature- but also pH-dependence of wettability and protein adsorption. Wettability and composition of coatings, fabricated with different polymerization times, were determined using contact angle measurements and Time Of Flight-Secondary Ion Mass Spectrometry (TOF-SIMS), respectively. Thermal response of wettability, measured between 20 and 40 ∘^{\circ}C, was prominent at pH 9 and 7 and diminished or absent at pH 5 and 3. This indicates a transition between hydrated loose coils and hydrophobic collapsed chains that is blocked at low pH. Higher surface roughness and dramatically increased adsorption of model protein (lentil lectin labeled with fluorescein isothiocyanate) were observed with AFM and fluorescence microscopy to occur in hydrophobic phases (at pH 3, for pH varied at constant temperature of 22 ∘^{\circ}C and at ∼33∘\sim 33 ^{\circ}C, for temperature varied at constant pH 9). Protein adsorption response to pH was confirmed by TOF-SIMS and Principal Component Analysis

    Temperature-responsive properties of poly(4-vinylpyridine) coatings : influence of temperature on the wettability, morphology, and protein adsorption

    No full text
    Although the pH-response of poly(vinylpyridine)-based systems is well-known and indeed used in several biomedical applications, the impact of temperature on the properties of this polymer has not been investigated in detail so far. Herein, we demonstrate the temperature-responsiveness and switchable wettability of two poly(4-vinylpyridine) coatings, mimicking the behavior of materials with lower critical solution temperature. The thermal response of P4VP spin-coated films, solvent cast on a glass, is weaker than that observed for P4VP-grafted brushes, fabricated via polymerization from an oligoperoxide grafted on an amino-silanized glass. Both the P4VP coatings exhibit a temperature dependence of the water contact angle with a well-defined transition at 13–14 °C. This transition is absent at acid pH levels wherein almost all pyridyl groups are protonated. The P4VP-grafted brushes were used to examine the impact of temperature on the surface morphology and protein adsorption. The coating surface, recorded with atomic force microscopy, evolved noticeably at alkaline pH, from being relatively smooth at 10 °C to structured and rough at 20 °C. In turn, at acid pH levels, flat surfaces with rare elevations were observed at both temperatures. The adsorption of bovine serum albumin and human fibrinogen was observed with fluorescence microscopy to be significantly more efficient for temperatures above the transition, indicating that P4VP coatings can act as a noteworthy switching material
    corecore