870 research outputs found

    Could Ren\'e Descartes have known this?

    Full text link
    Below we discuss the partition of the space of real univariate polynomials according to the number of positive and negative roots and signs of the coefficients. We present several series of non-realizable combinations of signs together with the numbers of positive and negative roots. We provide a detailed information about possible non-realizable combinations as above up to degree 8 as well as a general conjecture about such combinations.Comment: 15 pages, no figure

    Two-dimensional gauge theories of the symmetric group S(n) and branched n-coverings of Riemann surfaces in the large-n limit

    Get PDF
    Branched n-coverings of Riemann surfaces are described by a 2d lattice gauge theory of the symmetric group S(n) defined on a cell discretization of the surface. We study the theory in the large-n limit, and we find a rich phase diagram with first and second order transition lines. The various phases are characterized by different connectivity properties of the covering surface. We point out some interesting connections with the theory of random walks on group manifolds and with random graph theory.Comment: Talk presented at the "Light-cone physics: particles and strings", Trento, Italy, September 200

    Generalized two-dimensional Yang-Mills theory is a matrix string theory

    Get PDF
    We consider two-dimensional Yang-Mills theories on arbitrary Riemann surfaces. We introduce a generalized Yang-Mills action, which coincides with the ordinary one on flat surfaces but differs from it in its coupling to two-dimensional gravity. The quantization of this theory in the unitary gauge can be consistently performed taking into account all the topological sectors arising from the gauge-fixing procedure. The resulting theory is naturally interpreted as a Matrix String Theory, that is as a theory of covering maps from a two-dimensional world-sheet to the target Riemann surface.Comment: LaTeX, 10 pages, uses espcrc2.sty. Presented by A. D'adda at the Third Meeting on Constrained Dynamics and Quantum Gravity, Villasimius (Sardinia, Italy) September 13-17, 1999; to appear in the proceeding

    Maximal univalent disks of real rational functions and Hermite-Biehler polynomials

    Full text link
    The well-known Hermite-Biehler theorem claims that a univariate monic polynomial s of degree k has all roots in the open upper half-plane if and only if s=p+iq where p and q are real polynomials of degree k and k-1 resp. with all real, simple and interlacing roots, and q has a negative leading coefficient. Considering roots of p as cyclically ordered on RP^1 we show that the open disk in CP^1 having a pair of consecutive roots of p as its diameter is the maximal univalent disk for the function R=\frac{q}{p}. This solves a special case of the so-called Hermite-Biehler problem.Comment: 10 pages, 4 figure

    Bulk correlation functions in 2D quantum gravity

    Full text link
    We compute bulk 3- and 4-point tachyon correlators in the 2d Liouville gravity with non-rational matter central charge c<1, following and comparing two approaches. The continuous CFT approach exploits the action on the tachyons of the ground ring generators deformed by Liouville and matter ``screening charges''. A by-product general formula for the matter 3-point OPE structure constants is derived. We also consider a ``diagonal'' CFT of 2D quantum gravity, in which the degenerate fields are restricted to the diagonal of the semi-infinite Kac table. The discrete formulation of the theory is a generalization of the ADE string theories, in which the target space is the semi-infinite chain of points.Comment: 14 pages, 2 figure

    Matrix strings from generalized Yang-Mills theory on arbitrary Riemann surfaces

    Get PDF
    We quantize pure 2d Yang-Mills theory on an arbitrary Riemann surface in the gauge where the field strength is diagonal. Twisted sectors originate, as in Matrix string theory, from permutations of the eigenvalues around homotopically non-trivial loops. These sectors, that must be discarded in the usual quantization due to divergences occurring when two eigenvalues coincide, can be consistently kept if one modifies the action by introducing a coupling of the field strength to the space-time curvature. This leads to a generalized Yang-Mills theory whose action reduces to the usual one in the limit of zero curvature. After integrating over the non-diagonal components of the gauge fields, the theory becomes a free string theory (sum over unbranched coverings) with a U(1) gauge theory on the world-sheet. This is shown to be equivalent to a lattice theory with a gauge group which is the semi-direct product of S_N and U(1)^N. By using well known results on the statistics of coverings, the partition function on arbitrary Riemann surfaces and the kernel functions on surfaces with boundaries are calculated. Extensions to include branch points and non-abelian groups on the world-sheet are briefly commented upon.Comment: Latex2e, 29 pages, 2 .eps figure

    Quasiperiodic Solutions of the Fibre Optics Coupled Nonlinear Schr{\"o}dinger Equations

    Get PDF
    We consider travelling periodical and quasiperiodical waves in single mode fibres, with weak birefringence and under the action of cross-phase modulation. The problem is reduced to the ``1:2:1" integrable case of the two-particle quartic potential. A general approach for finding elliptic solutions is given. New solutions which are associated with two-gap Treibich-Verdier potentials are found. General quasiperiodic solutions are given in terms of two dimensional theta functions with explicit expressions for frequencies in terms of theta constants. The reduction of quasiperiodic solutions to elliptic functions is discussed.Comment: 24 page

    High-speed bipolar phototransistors in a 180nm CMOS process

    Get PDF
    AbstractSeveral high-speed pnp phototransistors built in a standard 180nm CMOS process are presented. The phototransistors were implemented in sizes of 40×40μm2 and 100×100μm2. Different base and emitter areas lead to different characteristics of the phototransistors. As starting material a p+ wafer with a p− epitaxial layer on top was used. The phototransistors were optically characterized at wavelengths of 410, 675 and 850nm. Bandwidths up to 92MHz and dynamic responsivities up to 2.95A/W were achieved. Evaluating the results, we can say that the presented phototransistors are well suited for high speed photosensitive optical applications where inherent amplification is needed. Further on, the standard silicon CMOS implementation opens the possibility for cheap integration of integrated optoelectronic circuits. Possible applications for the presented phototransistors are low cost high speed image sensors, opto-couplers, etc

    Boundary changing operators in the O(n) matrix model

    Full text link
    We continue the study of boundary operators in the dense O(n) model on the random lattice. The conformal dimension of boundary operators inserted between two JS boundaries of different weight is derived from the matrix model description. Our results are in agreement with the regular lattice findings. A connection is made between the loop equations in the continuum limit and the shift relations of boundary Liouville 3-points functions obtained from Boundary Ground Ring approach.Comment: 31 pages, 4 figures, Introduction and Conclusion improve
    corecore