8 research outputs found

    Magnetic behavior of Sm-Co-based permanent magnets during order/disorder phase transformations

    Get PDF
    The structural transformation from the metastable disordered TbCu7-type SmCo7 structure to the equilibrium ordered Th2Zn17-type Sm2Co17 structure was revealed by x-ray diffraction analysis using Reitveld refinement. The magnetic properties depended strongly on the stage of the transformation, as the coercivity strongly depended on the annealing temperature. The as-solidified alloy in the TbCu7-type structure had a coercivity of 4 kOe, which increased to greater than 9 kOe. The coercivity decreased to around 5 kOe as the transformation neared completion upon annealing at higher temperatures. The magnetization processes were also strongly influenced by the structural state. Initially it was totally controlled by nucleation followed by the domain wall pinning-controlled magnetization process

    Magnetic behavior of Sm-Co-based permanent magnets during order/disorder phase transformations

    Get PDF
    The structural transformation from the metastable disordered TbCu7-type SmCo7 structure to the equilibrium ordered Th2Zn17-type Sm2Co17 structure was revealed by x-ray diffraction analysis using Reitveld refinement. The magnetic properties depended strongly on the stage of the transformation, as the coercivity strongly depended on the annealing temperature. The as-solidified alloy in the TbCu7-type structure had a coercivity of 4 kOe, which increased to greater than 9 kOe. The coercivity decreased to around 5 kOe as the transformation neared completion upon annealing at higher temperatures. The magnetization processes were also strongly influenced by the structural state. Initially it was totally controlled by nucleation followed by the domain wall pinning-controlled magnetization process

    Order-disorder transformations in Sm–Co and Sm–Co–ZrC systems with 2-17 stoichiometry

    Get PDF
    This work investigates the order-disorder transformations utilizing time-resolved x-ray diffraction at the Advanced Photon Source. The metastable phases that can form during the order-disorder transformations in the Sm–Co intermetallics have the potential to produce materials with enhanced permanent magnetic properties. The high-temperature experiments transformed the disordered alloys with the TbCu7-type structure obtained by rapid solidification into the mixture of the hexagonal and rhombohedral ordered structures at 1375 K. The ordering process and the role of the ZrC alloying on the phase formation and ordering transformations were examined. The results showed the formation of shoulders of the fundamental peaks and superlattice peak broadening prior to complete ordering. The lattice parameters expanded linearly up to the onset of ordering, after which an abrupt change of slope was observed. The change in slope suggests a nucleation and growth mechanism for the ordering transformation. The effect of ZrC alloying promoted the formation of the disordered structure in the as-solidified state and lowered the onset of the ordering temperature

    Magnetic behavior of rapidly solidified Pr–Co alloys with the TbCu\u3csub\u3e7\u3c/sub\u3e-type structure

    Get PDF
    Rapid solidification has been utilized to produce a series of Pr–Co alloys between the Pr2Co17 and PrCo5 stoichiometries. In this system, PrCo5 has easy axis magnetization while Pr2Co17 has easy-plane magnetization. Alloys of the form (PrxCo1-x)94Ti3C3 with x ranging from 0.105 corresponding to the Pr2Co17 compound tox=0.167 corresponding to the PrCo5 compound were produced by melt spinning at a tangential wheel speed of 40 m/ s. The rapid solidification and alloying additions were found to suppress the formation of the Pr2Co17 ordered phase, leading to the formation of the disordered TbCu7-type structure over a range of Pr/Co ratios. Hysteresis loops were characterized by a smooth demagnetization curve reflective of single-phase demagnetization. Heat treatment at 800 °C led to the formation of the Pr2Co17 and PrCo5 phases, and the presence of the soft magnetic Pr2Co17 phase drastically decreased the coercivity. The soft magnetic behavior was consistent with in-plane magnetization of the Pr2Co17 structure that formed during heat treatment. However, the relatively high coercivity observed in the as-solidified alloys with the disordered TbCu7-type structure suggests that dumbbell disorder may create easy axis magnetization, and changes in saturation magnetization also imply that dumbbell configuration is important to the magnetic properties
    corecore