1,161 research outputs found

    Nonsteady end effects in Hele-Shaw cells

    Get PDF

    Origin of charge density at LaAlO3-on-SrTiO3 hetero-interfaces; possibility of intrinsic doping

    Get PDF
    As discovered by Ohtomo et al., a large sheet charge density with high mobility exists at the interface between SrTiO3 and LaAlO3. Based on transport, spectroscopic and oxygen-annealing experiments, we conclude that extrinsic defects in the form of oxygen vacancies introduced by the pulsed laser deposition process used by all researchers to date to make these samples is the source of the large carrier densities. Annealing experiments show a limiting carrier density. We also present a model that explains the high mobility based on carrier redistribution due to an increased dielectric constant.Comment: 14 pages, 3 figures, 1 table; accepted for publication in Phys. Rev. Lett

    Location of sugars in multilamellar membranes at low hydration

    Get PDF
    Severe dehydration is lethal for most biological species. However, there are a number of organisms which have evolved mechanisms to avoid damage during dehydration. One of these mechanisms is the accumulation of small solutes (e.g. sugars), which have been shown to preserve membranes by inhibiting deleterious phase changes at low hydration. Specifically, sugars reduce the gel to fluid phase transition temperatures of model lipid/water mixtures. However, there is a debate about the precise mechanism, the resolution of which hinges on the location of the sugars. In excess water, it has been observed using contrast variation SANS that the sugar concentration in the excess phase is higher than in the interlamellar region [Deme and Zemb, J. Appl. Crystallog. 33 (2000) 569]. This raises two questions regarding the location of the sugars at low hydrations: first, does the system phase separate to give a sugar/water phase in equilibrium with a lipid/water/sugar lamellar region (with different sugar concentrations); and second, is the sugar in the interlamellar region uniformly distributed, or does it concentrate preferentially either in close proximity to the lipids, or towards the center of the interbilayer region. In this paper we present the preliminary results of measurements using contrast variation SANS to determine the location of sugars in lipid/water mixtures

    Invariant expansion for the trigonal band structure of graphene

    Full text link
    We present a symmetry analysis of the trigonal band structure in graphene, elucidating the transformational properties of the underlying basis functions and the crucial role of time-reversal invariance. Group theory is used to derive an invariant expansion of the Hamiltonian for electron states near the K points of the graphene Brillouin zone. Besides yielding the characteristic k-linear dispersion and higher-order corrections to it, this approach enables the systematic incorporation of all terms arising from external electric and magnetic fields, strain, and spin-orbit coupling up to any desired order. Several new contributions are found, in addition to reproducing results obtained previously within tight-binding calculations. Physical ramifications of these new terms are discussed.Comment: 10 pages, 1 figure; expanded version with more details and additional result

    Optical-Model Description of Time-Reversal Violation

    Full text link
    A time-reversal-violating spin-correlation coefficient in the total cross section for polarized neutrons incident on a tensor rank-2 polarized target is calculated by assuming a time-reversal-noninvariant, parity-conserving ``five-fold" interaction in the neutron-nucleus optical potential. Results are presented for the system n+165Hon + {^{165}{\rm Ho}} for neutron incident energies covering the range 1--20 MeV. From existing experimental bounds, a strength of 2±102 \pm 10 keV is deduced for the real and imaginary parts of the five-fold term, which implies an upper bound of order 10−410^{-4} on the relative TT-odd strength when compared to the central real optical potential.Comment: 11 pages (Revtex

    Generalized "Quasi-classical" Ground State for an Interacting Two Level System

    Full text link
    We treat a system (a molecule or a solid) in which electrons are coupled linearly to any number and type of harmonic oscillators and which is further subject to external forces of arbitrary symmetry. With the treatment restricted to the lowest pair of electronic states, approximate "vibronic" (vibration-electronic) ground state wave functions are constructed having the form of simple, closed expressions. The basis of the method is to regard electronic density operators as classical variables. It extends an earlier "guessed solution", devised for the dynamical Jahn-Teller effect in cubic symmetry, to situations having lower (e.g., dihedral) symmetry or without any symmetry at all. While the proposed solution is expected to be quite close to the exact one, its formal simplicity allows straightforward calculations of several interesting quantities, like energies and vibronic reduction (or Ham) factors. We calculate for dihedral symmetry two different qq-factors ("qzq_z" and "qxq_x") and a pp-factor. In simplified situations we obtain p=qz+qx−1p=q_z +q_x -1. The formalism enables quantitative estimates to be made for the dynamical narrowing of hyperfine lines in the observed ESR spectrum of the dihedral cyclobutane radical cation.Comment: 28 pages, 4 figure

    Inequality of opportunity in selection procedures limits diversity in higher education:An intersectional study of Dutch selective higher education programs

    Get PDF
    Selection for higher education (HE) programs may hinder equal opportunities for applicants and thereby reduce student diversity and representativeness. However, variables which could play a role in inequality of opportunity are often studied separately from each other. Therefore, this retrospective cohort study conducts an innovative intersectional analysis of the inequality of opportunity in admissions to selective HE programs. Using a combination of multivariable logistic regression analyses and descriptive statistics, we aimed to investigate 1) the representativeness of student populations of selective HE programs, as compared to both the applicant pool and the demographics of the age cohort; 2) the demographic background variables which are associated with an applicant’s odds of admission; and 3) the intersectional acceptance rates of applicants with all, some or none of the background characteristics positively associated with odds of admission. The study focused on all selective HE programs (n = 96) in The Netherlands in 2019 and 2020, using Studielink applicant data (N = 85,839) and Statistics Netherlands microdata of ten background characteristics. The results show that student diversity in selective HE programs is limited, partly due to the widespread inequality of opportunity in the selection procedures, and partly due to self-selection. Out of all ten variables, migration background was most often (negatively) associated with the odds of receiving an offer of admission. The intersectional analyses provide detailed insight into how (dis)advantage has different effects for different groups. We therefore recommend the implementation of equitable admissions procedures which take intersectionality into account.</p
    • …
    corecore