4,921 research outputs found

    Optimal Storage Rack Design for a 3-dimensional Compact AS/RS

    Get PDF
    In this paper, we consider a newly-designed compact three-dimensional automated storage and retrieval system (AS/RS). The system consists of an automated crane taking care of movements in the horizontal and vertical direction. A gravity conveying mechanism takes care of the depth movement. Our research objective is to analyze the system performance and optimally dimension of the system. We estimate the craneñ€ℱs expected travel time for single-command cycles. From the expected travel time, we calculate the optimal ratio between three dimensions that minimizes the travel time for a random storage strategy. In addition, we derive an approximate closed-form travel time expression for dual command cycles. Finally, we illustrate the findings of the study by a practical example.AS/RS;Warehousing;Order Picking;Travel Time Model;Compact Storage Rack Design

    Design and Control of Warehouse Order Picking: a literature review

    Get PDF
    Order picking has long been identified as the most labour-intensive and costly activity for almost every warehouse; the cost of order picking is estimated to be as much as 55% of the total warehouse operating expense. Any underperformance in order picking can lead to unsatisfactory service and high operational cost for its warehouse, and consequently for the whole supply chain. In order to operate efficiently, the orderpicking process needs to be robustly designed and optimally controlled. This paper gives a literature overview on typical decision problems in design and control of manual order-picking processes. We focus on optimal (internal) layout design, storage assignment methods, routing methods, order batching and zoning. The research in this area has grown rapidly recently. Still, combinations of the above areas have hardly been explored. Order-picking system developments in practice lead to promising new research directions.Order picking;Logistics;Warehouse Management

    An Integrated Approach for Controlling Verticillium Wilt of Strawberry

    Get PDF
    Strawberry (Fragaria x ananassa, Duch.) is an important crop in California, with more than 35,000 acres planted in 2018 resulting in a farm gate value of $3.1 billion. In 2020, California strawberry production accounted for more than 85% of national strawberry production and faces serious threats to production due to various soil-borne diseases. One such disease, Verticillium wilt, is caused by the fungal pathogen Verticillium dahliae and is commonly found in temperate zones around the world where strawberries are grown. Due to the phase-out of efficacious fumigants like methyl bromide, alternative disease management methods have become necessary to alleviate threats to production. Alternative fumigation practices such as crop termination have recently been investigated, and the integration of crop termination with bed fumigation and host resistance can play an integral role in control of Verticillium wilt. A field trial was established at California Polytechnic State University, San Luis Obispo to examine the efficacy of integrative management solutions for control of Verticillium wilt of strawberry in a naturally infested field. The efficacy of sequential fumigation applications of crop termination and bed fumigation was examined. Further, the integration of a resistant cultivar was also implemented in hopes of further decreasing plant mortality and increasing yield. Different fumigant products such as metam potassium, metam sodium, and chloropicrin were used to assess their performance in different fumigation applications. Metam potassium and metam sodium were used for crop termination. When used for crop termination, both products delivered significant reduction in soil inoculum density and adequate crop injury. Metam potassium, metam sodium, and chloropicrin were used for bed fumigation. All products reduced soil inoculum density. Lower plant mortality and higher yield resulted from sequential applications of crop termination and bed fumigation, with average plant mortality for non-treated control plots and sequentially fumigated plots being 67.2% and 24.1%, respectively. There were no significant increases in yield for plots bed fumigated and sequentially crop terminated and bed fumigated, but significant increases in yield for all plots treated versus the non-treated plots were found. The integration of a moderately resistant cultivar Valiant after the fumigation series showed lower mortality and higher yield versus a susceptible cultivar Seascape. A two-year study was also conducted in order to evaluate host resistance to Verticillium wilt in 74 cultivars and elite breeding lines from five strawberry breeding programs. Genotypes were established in a field naturally infested with V. dahliae on the campus farm at California Polytechnic State University, San Luis Obispo. All five breeding programs had a wide range of susceptibility to Verticillium wilt, ranging from 1.5% to 100% mortality for both years of the trial. Twenty-three cultivars and elite breeding lines were common to both years of the trial; of these, five cultivars showed vastly different results between the two years. For example, ‘Monterey’ showed 78.8% mortality in 2021 and 11.5% mortality in 2022. This demonstrates the importance of evaluating host resistance over multiple years under different environmental conditions and field locations

    Imaging Pulsed Laser Deposition oxide growth by in-situ Atomic Force Microscopy

    Get PDF
    To visualize the topography of thin oxide films during growth, thereby enabling to study its growth behavior quasi real-time, we have designed and integrated an atomic force microscope (AFM) in a pulsed laser deposition (PLD) vacuum setup. The AFM scanner and PLD target are integrated in a single support frame, combined with a fast sample transfer method, such that in-situ microscopy can be utilized after subsequent deposition pulses. The in-situ microscope can be operated from room temperature (RT) up to 700∘^\circC and at (process) pressures ranging from the vacuum base pressure of 10−6^{-6} mbar up to 1 mbar, typical PLD conditions for the growth of oxide films. The performance of this instrument is demonstrated by resolving unit cell height surface steps and surface topography under typical oxide PLD growth conditions.Comment: 8 pages, 8 figure

    Passive polarization converter in SiON technology

    Full text link

    Changing with the tide: Semi-parametric estimation of preference dynamics

    Get PDF
    We contrast the discovered preference hypothesis against the theory of coherent arbitrariness in a split-sample stated choice experiment on flood-risk exposure. A semiparametric local multinomial logit model is developed as an alternative to the Swait and Louviere (1993) test procedure controlling for preference dynamics within and between samples. The proposed model supports the discovered preference hypothesis by means of a decaying starting point bias. The Swait and Louviere (1993) test procedure reaches a different conclusion. It rejects the assumption of stable preferences, but most preference dynamics tend to be smoothed out, causing a more erratic pattern of preference dynamics

    Quantitative study on the effects of sugars on membrane phase transitions - preliminary investigations

    Get PDF
    It is well known that sugars and other small solutes can reduce the temperature at which membranes undergo the fluid-gel phase transition at low hydration. The mechanisms for this are now well understood [Bryant et al. Abstract No. 85]. Naively, one might expect that this ability would be a direct function of sugar concentration, and that the effects should increase as the amount of sugar increases. However, the real situation is more complex. Previous work [K.L. Koster, Y.P. Lei, M. Anderson, S. Martin, G. Bryant, Biophys. J. 78 (2000) 1932–1946.] has shown that there are two distinct mechanisms for reduction in the transition temperature: first, if the sugar concentration is too low to form a glass, then the transition temperature can be reduced to (at best) the full hydration value; and second, if a glass forms, the transition temperature can be depressed to a fixed value, largely independent of sugar concentration. However, to the authors’ knowledge there has been no systematic study of the membrane transition temperature as a function of sugar/lipid ratio and level of hydration. In this paper we present the results of such a study. We show that in the absence of a glass, the reduction in the membrane phase transition temperature reaches a maximum value at a limiting sugar:lipid ratio. Beyond that value, the addition of further sugar no longer alters the membrane phase transition temperature. We explain these results in terms of hydration forces between membranes, and comment on the implications of these results for the prevention of damage to membranes during dehydration

    Online Dispatching Rules For Vehicle-Based Internal Transport Systems

    Get PDF
    On-line vehicles dispatching rules are widely used in many facilities such as warehouses to control vehicles' movements. Single-attribute dispatching rules, which dispatch vehicles based on only one parameter, are used commonly. However, multi-attribute dispatching rules prove to be better in general. In this study, we introduce new dispatching rules and evaluate their performance compared to several good dispatching rules in literature, using the experimental design of a real case study. The performance criteria are minimizing the average load waiting time while keeping the maximum load waiting time as small as possible and better utilize vehicles. The experiments show that newly introduced hybrid dispatching rule yields the best performance overall

    Effects of sugars on lipid bilayers during dehydration - SAXS/WAXS measurements and quantitative model

    Get PDF
    We present an X-ray scattering study of the effects of dehydration on the bilayer and chain-chain repeat spacings of dipalmitoylphosphatidylcholine bilayers in the presence of sugars. The presence of sugars has no effect on the average spacing between the phospholipid chains in either the fluid or gel phase. Using this finding, we establish that for low sugar concentrations only a small amount of sugar exclusion occurs. Under these conditions, the effects of sugars on the membrane transition temperatures can be explained quantitatively by the reduction in hydration repulsion between bilayers due to the presence of the sugars. Specific bonding of sugars to lipid headgroups is not required to explain this effect
    • 

    corecore