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Summary 

We present an X-ray scattering (SAXS/WAXS) study of the effects of dehydration 

on the bilayer and chain-chain repeat spacings of dipalmitoylphosphatidylcholine (DPPC) 

bilayers in the presence of sugars. The presence of sugars has no effect on the average 

spacing between the phospholipid chains in either the fluid or gel phase. Using this finding, 

we establish that for low sugar concentrations only a small amount of sugar exclusion 

occurs. Under these conditions the effects of sugars on the membrane transition 

temperatures can be explained quantitatively by the reduction in hydration repulsion 

between bilayers due to the presence of the sugars. Specific bonding of sugars to lipid 

headgroups, as proposed by the Water Replacement Hypothesis, is not required to explain 

this effect. 

 

Introduction 

It is well established that sugars and other small solutes are important in improving 

desiccation and freezing survival for a range of species [1-5]. One property which has been 

widely studied is the ability of sugars to stabilize membranes in the fluid phase by  limiting 

the dehydration-induced increase in the gel-fluid transition temperature of membranes. 

This protective effect is observed throughout the dehydration process [6-8], down to the 

fully dried state [9-11]. 

For many years it was believed that this ability was due to the ability of 

disaccharides (trehalose and sucrose) to insert between adjacent lipid head groups during 

dehydration and hydrogen bond to them, spreading the lipid head groups apart, and thus 

inhibiting the transition to the more tightly packed gel phase (e.g. see [12-15]). This model, 

known as the water replacement hypothesis (WRH), is widely cited (e.g. see [15-17] for 

some recent examples). In recent years, however, an alternative model has been proposed 
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which explains the observed effect of sugars on the gel-fluid transition temperature in 

terms of the sugars’ effect on the hydration repulsion [Rand, 1989 #29] that develops 

between opposing membranes during dehydration. In the absence of sugars, the hydration 

repulsion gives rise to a lateral compressive stress in the bilayer which squeezes adjacent 

lipids more closely together, resulting in a transition to the gel phase. When solutes such as 

sugars are present between the membranes, their non-specific osmotic and volumetric 

effects reduce the hydration repulsion, reduce the compressive stress in the membranes, 

and hence tend to maintain the average lateral separation between lipids [6, 8, 18-20]. This 

model, called the hydration forces explanation (HFE), also explains the additional 

depression of the transition temperature observed if the sugar solution vitrifies while the 

lipids are in the fluid state [7]. 

The WRH is a qualitative model, and cannot be used to make quantitative 

predictions. By contrast the HFE is a mathematical model which has had a great deal of 

success in semi-quantitatively explaining the observed effects of sugars [21]. Its 

application is complicated by the fact that partial exclusion of sugars from the interlamellar 

layers is observed to occur during dehydration [6, 8, 22] . One of the aims of this study is 

to test the HFE quantitatively under conditions where exclusion is minimal. 

A central proposition of the WRH is that during desiccation, sugars partition 

preferentially into the region near the lipid head groups, displacing water molecules from 

around, and between, the head groups, and H-bonding with the lipids (e.g. [10, 12]). H-

bonding of sugars with lipids is uncontroversial, but the other two aspects of the model are 

not, and can be tested experimentally. Specifically: do sugars partition preferentially into 

the region near the lipid head groups; and do the sugars insert between lipid head groups, 

as has been proposed schematically in a number of cartoons used in explaining the WRH 

(e.g. [12,])? 
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An increasing body of evidence shows that sugars are in fact partially excluded 

from the region near phospholipid headgroups. First, using the Surface Forces Apparatus, 

Pincet and co-workers [23] showed evidence that sugars (specifically trehalose and 

sorbitol) were partially excluded from the inter-bilayer space. Second, Yoon and co-

workers [24] found, using quantitative solid state NMR, that sugars were excluded from 

the region near the headgroups. More recently, a hydration forces analysis of membrane 

dehydration in the presence of sugars found strong indirect evidence for partial exclusion 

from the inter-bilayer space at low hydrations [6]. 

Finally, for multi-lamellar vesicles in excess water in the presence of sugars, Demé 

and co-workers [25] used contrast variation Small Angle Neutron Scattering (SANS) to 

show that sugar concentrations were lower between the bilayers than in the aqueous 

solution surrounding the membranes. Lenné and co-workers [22] showed that the same 

technique can be applied at low hydrations, and demonstrated that lipid/glucose/water 

mixtures undergo microphase separations, with glucose concentrations between the 

bilayers being considerably lower than in the excluded regions. This mounting evidence 

strongly suggests that, in the presence of water, down to very low hydration, sugars 

partition away from phospholipid headgroups, rather than inserting between the 

headgroups. 

In this paper we report results of small and wide angle X-ray scattering experiments 

that examine how the presence of both mono- and di- saccharides affects the average 

distance between bilayers and the average distance between lipid chains in the bilayer. 

Further, the data allow an estimation of the amount of sugar/water exclusion occurring in 

these systems. These results are compared with the quantitative predictions of the HFE and 

the qualitative predictions of the WRH to explain the effects of sugars on membrane 

transition temperatures. 



 5 

 

Theory 

Effect of sugars on phase transition temperature of phospholipids 

At low to intermediate hydrations the force balance between membranes is 

dominated by the strongly repulsive hydration force [26]: 

     (1) 

where P is the repulsive force per unit area, Po is the extrapolated value at zero separation, 

dw is the separation between opposing bilayers, and l is the decay length of the force. This 

repulsive force results in a lateral compressive stress in the membrane [27]: 

      (2) 

This compressive stress leads to a reduction in the average area per lipid, a, as the 

hydration is reduced. The area may be written [20]: 

     (3) 

where ao is the area per lipid at full hydration and ka is the lateral compressibility of the 

bilayer. For a system where all the sugar and water are between bilayers [6], dw is given 

by: 

     (4) 

where nw and ns are the number of water and sugar molecules per lipid, and vw and vs are 

their respective partial molecular volumes. 

The compressive stress (Eq. 2) favors the transition to the gel phase, which has a 

smaller area per molecule. Using the two dimensional version of the Clausius-Clapeyron 

equation, the corresponding change in transition temperature is given by [28]: 

      (5) 
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where To is the transition temperature in excess water, Da is the difference between the 

area per lipid in the fluid and gel phases, and L is the enthalpy of the transition.  

Eqs.1 to 4 can in principle be substituted into Eq.5 to find an expression for the 

change in the transition temperature DT, however there is no analytic solution and the 

expression can be simplified considerably by making the approximation that the lateral 

compressibility ka >> Pdw in Eq 3, which leads to a ≈ ao. This approximation allows for a 

full solution of Eq 5 in terms of measurable parameters [21]:  

 (6) 

In the analysis that follows, both the exact solution, (determined iteratively using a 

program written in Matlab), and the approximate solution will be presented. 

 The application of these equations requires literature values for a number of 

parameters. For the fully hydrated DPPC gel-fluid transition an average of several values 

in the database Lipidat [42] was used: L = 33.8±3 kJ/mol and To = 42.4±0.6°C; The most 

comprehensive study yet published of lipid areas [30] was used to determine the area 

parameters. That reference quoted values of: a = 47.9 Å2 (gel phase @ 20°C) and a = 64 Å2 

(fluid phase @ 50°C), and an area compressibility of 250 mN/m (fluid phase – this is used 

in the numerical solution, but not in the approximation (equation 6)). These values must be 

adjusted for the thermal expansivity a = 0.0003 /°C (gel) and a = 0.006 / °C (fluid) [30]. 

Using these, the adjusted values at the transition temperature are ag = 48 Å2, af = 61 Å2 and 

therefore Da = 13 Å2. Finally, the standard values of molecular volumes (from densities) 

are vs = 490 Å3 and vw = 30 Å3. The values for the hydration parameters are strongly 

determined by assumptions used (eg [30, 26]). As we are interested in the effects of sugars, 

rather than the hydration force per se, we use values which give a reasonable fit to the data 
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without sugar: Po = 700 MPa, l = 2 Å. These are consistent with the spread of values 

measured (eg [30, 26]). 

 

Analysis of X-ray diffraction data 

 The primary quantity measured in the X-ray scattering experiments is the lamellar 

repeat spacing, d. It is standard practice to define the boundary between water and the lipid 

head groups using the volume weighted average interface [29]. By this definition the 

average inter-bilayer separation dw is given by: 

      (7) 

where the lipid volume fraction in the presence of water and sugars is given by: 

    (8) 

where the mL, mw, ms and ,  and  are, respectively, the masses and partial specific 

volumes of the lipid, water and sugar. The average area per lipid head group, in the 

gravimetric approximation, is then given by: 

     (9) 

where ML = 734 kg/kmol for DPPC is the lipid molecular mass and NA is Avogadro’s 

constant. While Eq. 9 relies on the gravimetric approximation, which has a number of 

limitations (as discussed in detail in [30]), the approximation is adequate for the purposes 

of the discussion here. 

In addition, the experiments yield the wide angle reflection, which corresponds to 

the average lateral chain-chain separation, dc. In the gel phase, where the chain packing is 

approximately hexagonal, this can be used to determine the average area per lipid chain, ac: 

      (10) 
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The gel phase of DPPC is known to have the lipid chains tilted at an angle qt relative to the 

bilayer normal (designated the Lb’ phase). The tilt of the lipid chains with respect to the 

bilayer normal is then given by [31] : 

     (11) 

The above equations can be applied only if there is a single phase – i.e. all of the water and 

sugars are between bilayers, and there is no excluded phase. 

 

Methods 

DPPC (1,2-dipalmitoylphosphatidylcholine) (powder) was obtained from Avanti 

Polar Lipids (Birmingham, AL, USA) and the sugars sucrose (SigmaUltra >99.5% purity) 

and glucose (>99% purity) were purchased from Sigma Chemical Co. (St. Louis, MO, 

USA). All were used without further purification. 

Dry DPPC was suspended in an appropriate amount of sugar solution to achieve the 

desired sugar:DPPC molar ratio in the range from 0:1 to 1:1. Further milli-Q water was 

added as necessary to ensure the sample was in excess water. Samples were mixed by 

repeated freeze-thawing, vortex mixing and centrifugation, then equilibrated at 23 °C over 

saturated salts that generate known Relative Humidities (RH) (KNO3, 91%; NaCl, 75%; 

NaBr, 57.5%, MgCl2, 32.5%, LiCl, 13%, ZnCl2, 5.5%, P2O5, ~0.1%) [32, 33] for a period 

of 1-3 weeks. The RHs were monitored with a Hastings humidity data logger (Hastings, 

Port Macquarie, Australia). Sample masses were monitored during the dehydration 

process. Samples were considered to be near equilibrium when the mass remained constant 

over several days. Mixing continued until samples were visually homogeneous. Previous 

work [8] has established that these preparation methods produce well mixed, homogeneous 

samples. For the present experiments the sugar concentrations are much lower than in most 

previous studies, and mixing is relatively easy. Nonetheless, good mixing was confirmed 
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by the  reproducibility of the method (at least 2 replicates), and the repeatability of the 

DSC transitions. Once equilibrated, samples for X-ray analysis were transferred into 1.5 

mm quartz X-ray capillaries (Wolfgang Muller Glas Technik, Berlin) and sealed using 

silicone (Pro Sea instant gasket, Racer Technology, USA). Samples for DSC were loaded 

into volatile sample pans and Differential Scanning Calorimetry (DSC) was carried out to 

determine transition temperatures, as described in [21, 34]. Sample weights were recorded 

at each stage of the sample preparation, enabling the calculation of the masses of each 

component. 

Synchrotron Small and Wide angle X-ray scattering (SAXS  and WAXS) 

experiments were carried out on the ChemMatCARS 15ID-D beamline at the Advanced 

Photon Source (APS), Argonne National Laboratory. Diffraction patterns were recorded on 

a Bruker 6000 CCD detector over the Q range 0.046 to 1.7 Å-1, covering the length scales 

of interest for the primary repeat distance (in the SAXS regime) and the wide angle 

reflection (in the WAXS regime). For further details see [34, 35]. Kinetic (temperature 

scanning) measurements were made during both cooling and warming between 70 °C and 

20°C. Equilibrium measurements were made at fixed temperatures, after incubating at that 

temperature for 5 minutes. 

 

Results 

Figure 1 shows a typical example of a set of intensity versus scattering vector plots 

as temperature was scanned down from 70 °C to 20 °C  at a rate of ~15 °C/min 

(sucrose:DPPC 0.2:1, RH=13%). At 70 °C the sample was in the fluid phase (back of 

figure), and as it was cooled it underwent a transition to the gel phase (front of figure). The 

transition can be clearly seen by the increase in the number of small angle inter-lamellar 

reflections, characteristic of an ordered lamellar phase. The change in the character of the 
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wide angle reflection from a broad fluid peak at q~1.4 Å-1, to a sharper peak at q~1.5 Å-1 is 

characteristic of the fluid-gel phase transition. This behaviour is completely consistent with 

the known behaviour of phospholipids [36, 37], and the presence of sugars did not 

qualitatively change this behaviour; it only lowered the temperature at which the transition 

occurred. 

In order to investigate what effect the presence of sugars has on the structure of 

bilayers, equilibrium measurements were made at several fixed temperatures. The repeat 

spacings (d=2p/q) for both the primary reflection (d) and the wide angle reflection (dc) are 

plotted as functions of sugar content for several different relative humidities (Fig. 2). 

Figs 2a and 2b, show respectively the effects of glucose and sucrose on DPPC in 

the gel phase at 20 °C (note the data are plotted with the number of sugar rings per lipid on 

the x axis). As can be seen the primary repeat spacing, d, increases almost linearly with 

increasing sugar volume, while the chain-chain distance dc is essentially independent of 

sugar ratio and relative humidity (note the highly expanded scale on the right hand axis). 

The results for sucrose and glucose are essentially identical. The increase in d spacing is 

consistent with the presence of sugar between bilayers. The fact that glucose and sucrose 

give identical results (when plotted as d vs. number of sugar rings/lipid) supports the idea 

that it is the volume of sugar, rather than the specific nature of the sugar, that determines 

its effect on the membrane [20]. 

Figure 2c shows the effects of sucrose on DPPC in the fluid phase at 70 °C. The 

effects are similar to the gel phase, with some small differences: first d increases much less 

with increasing sugar ratio than is the case in the gel phase; second there is more scatter in 

the values of the average chain-chain spacing, due to the broad nature of the reflection in 

the fluid phase (see figure 1). However, again there is no effect of the sugar on the chain-

chain spacing. 
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Looking more closely at the wide angle chain-chain spacing, for the samples in the 

gel phase (at 20 °C), the wide angle reflection was 4.15±0.2 Å, regardless of the type or 

concentration of sugar present. For DPPC in the fluid phase (at 70 °C) the average chain 

separation was 4.51±0.02 Å, again, regardless of the concentration of sucrose present. The 

results shown here are consistent with previous experiments on DPPC without sugar, 

where values of ~4.2 Å and ~4.6 Å are found in the gel and fluid phases respectively (e.g. 

[36, 38]). Experiments at temperatures between 20 °C and 70 °C show similar trends (data 

not shown). The data shown are for sucrose:lipid ratios up to 0.5:1, and glucose ratios up to 

1:1. In both cases the maximum sugar ratio used was 1 sugar ring per lipid. As has been 

shown previously [21] concentrations beyond this level do not provide any additional 

effect on the membrane phase transition temperatures. 

In order to apply the HFE model, we need to make an estimate of how much 

sugar/water is excluded from between the bilayers. To do this we can make two 

independent estimates of the area per lipid. For the gel phase lipid, Eq. 10 can be used to 

calculate the average area per lipid chain, giving a value of ac = 20±0.2 Å2. (For the fluid 

phase, where the chain packing is not hexagonal, Eq. 10 does not strictly apply, but gives 

an indicative value of ac = 23.4±0.6 Å2). 

In principle, Eqs. 7-9 can then be used to calculate the area per lipid head group a, 

and Eq. 4 can be used to calculate the inter-bilayer separation dw. The application of these 

equations assumes that all of the sugar and water lie between the bilayers. However, recent 

neutron scattering experiments have shown that at high concentrations sugars are partially 

excluded during dehydration [22], confirming previous circumstantial evidence [6]. In 

order to quantify the effects observed here, it is necessary to ascertain to what extent partial 

exclusion is taking place in these systems.  
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As DPPC has been so well characterized in the absence of sugar, and as we have 

shown that the presence of sugar has no effect on the chain packing, we can use this 

information to make estimates of both a and dw. In the gel phase, Eq. 11 relates the angle of 

tilt of the lipid chains relative to the bilayer normal, qt, to the chain area ac and the area per 

headgroup a. The best estimated value for qt for fully hydrated DPPC in the gel phase is 

that of Sun et al. [39], who determined a value of qt = 31.6°. It is known that the value of qt 

decreases as the water content is reduced [40], so for the purposes of the discussion here, 

this value can be regarded as an upper limit. Using the calculated value of ac and Eq. 11 

therefore leads to an upper limit to the average area per lipid of amax = 47 Å2 (averaged over 

all samples). This value is consistent with the fully hydrated value of a=47.9 Å2 [30]. 

Alternatively, by assuming there is no phase separation, and that all the sugar and 

water are between the lamellae, we can use the measured mass fractions of the 

components, the known value of  (0.939 ml/g in the gel phase [30]) along with Eqs. 7-9, 

to calculate the area agrav. Figure 3 shows both agrav and amax for the samples in the gel 

phase. Although there is some scatter in the data, agrav is lower than amax by a small amount 

(<10%) in all cases, and the difference decreases as the sugar ratio increases. These results 

suggest that there may be some phase separation, but it is relatively small at these sugar 

ratios. The error introduced by the assumption that all the sugar and water is between the 

bilayers, in the calculation of dw in Eq. 4 is less than 10%. 

Having demonstrated that exclusion is a relatively small effect for these systems, 

the experimental data on the effects of sugars on the membrane transition temperature can 

now be compared with the theory. Figure 4 shows experimental transition temperatures 

measured previously [21] as a function of water:lipid ratio, along with the results of the 

model (both the iterative solution (solid lines) and the approximation (Eq. 6 - dashed lines).  
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The model gives give good agreement with experimental results, with the iterative 

solution slightly higher than the approximation. With the exception of the hydration force 

parameters, small changes in the values for the parameters do not significantly affect the 

results. Changing these parameters affects the absolute position and shape of the curve 

without sugar, but does not qualitatively change the effect of the sugars. Further refinement 

of the hydration force parameters would help to determine the accuracy of the model. 

 

Discussion 

 Figure 4 shows that the HFE quantitatively explains the effects of low 

concentrations of sugars on membrane transition temperatures over a wide hydration range. 

As discussed in a previous paper [21], the model is quantitatively valid only if all the sugar 

is located in the inter-membrane layers. For sugar/lipid ratios higher than 0.2:1, partial 

exclusion can occur [21, 22]. However, the results presented here have shown that this 

exclusion is relatively small for the samples measured here, allowing the model to be 

applied. More precise data regarding the extent of exclusion would be needed to enable the 

model to be used at higher sugar:lipid ratios. 

Previously we have shown that the maximum effect of sugars on reducing the 

transition temperature is achieved at a ratio of ~1 sugar rings per lipid [21], so the results 

presented here cover the most relevant range of sugar:lipid ratios. The evidence presented 

here strongly suggests that the presence of sugars does not significantly affect the 

membrane structure during dehydration, in either the fluid or gel phase, except for 

changing the transition temperature via the Clausius-Clapeyron effect. This is indirect 

evidence that insertion of sugars between lipid head groups in the plane of the bilayer (as 

proposed in some versions of the WRH) is not responsible for their effects on membrane 

transition temperatures. The fact the effects of sucrose and glucose are almost identical 
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further supports this view, confirming previous studies showing the non-specific nature of 

the effect of a wide range of sugars [7, 41] and maltodextrins [8] on membrane phase 

transition temperatures. The WRH is not quantitative and so has no quantitative predictions 

to be compared with experiments. In contrast, the Hydration Forces Explanation is 

quantitative, and provides excellent agreement with experiment, as shown in figure 4.  

 

Conclusions 

In this paper we have demonstrated that the presence of sugars has no significant 

effect on lipid chain packing in either the gel or fluid phases, at any hydration. We have 

also shown that the lamellar repeat spacing increases monotonically with sugar 

concentration up to ratios of ~1 sugar rings per lipid, for both sucrose and glucose. The 

results show that exclusion of sugars from the inter-bilayer space is modest for the systems 

studied, allowing a comparison between experimental results and the Hydration Forces 

Explanation This comparison shows that, unlike the Water Replacement Hypothesis, the 

Hydration Forces Explanation quantitatively explains the effects of sugars on membrane 

transition temperatures, using only their non-specific volumetric properties. 

 

Acknowledgements 

Lenné and Bryant would like to thank Bob Shanks for the use of the calorimeter, 

and David Cookson for expert help with the synchrotron experiments. The authors also 

thank an anonymous reviewer for helpful comments on the manuscript. This work, 

including use of the ChemMatCARS sector, was supported by the Australian Synchrotron 

Research Program, which is funded by the Commonwealth of Australia under the Major 

National Research Facilities Program. Use of the Advanced Photon Source was supported 



 15 

by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, 

under Contract No. DE-AC02-06CH11357. 

 

References 

1. Crowe, J.H., F.A. Hoekstra, and L.M. Crowe, Anhydrobiosis. Annual Review of 

Plant Physiology, 1992. 54: p. 579-599. 

2. Halperin, S.J. and K.L. Koster, Sugar effects on membrane damage during 

desiccation of pea embryo protoplasts. Journal of Experimental Botany, 2006. 57: 

p. 2303-2311. 

3. Hoekstra, F.A. and R. Van Roekel, Desiccation tolerance of Papaver dubium L 

pollen during its development in the anther: possible role of phospholipid 

composition and sucrose content. Plant Physiology, 1988. 88: p. 626-632. 

4. Koster, K.L. and A.C. Leopold, Sugars and Desiccation Tolerance in Seeds. Plant 

Physiology, 1988. 88: p. 829-832. 

5. Uemura, M. and P.L. Steponkus, Modification of the intracellular sugar content 

alters the incidence of freeze-induced membrane lesions of protoplasts isolated 

from Arabidopsis thaliana leaves. Plant, Cell & Environment, 2003. 26: p. 1083-

1096. 

6. Bryant, G. and K.L. Koster, Dehydration of solute-lipid systems: hydration force 

analysis. Colloids and Surfaces B: Biointerfaces, 2004. 35: p. 73-79. 

7. Koster, K.L., et al., The effect of Vitrified and Nonvitrified Sugars on 

Phosphatidylcholine Fluid-to-Gel Phase Transitions. Biophysical Journal, 2000. 

78: p. 1932-1946. 



 16 

8. Koster, K.L., K.J. Maddocks, and G. Bryant, Exclusion of maltodextrins from 

phosphatidylcholine multilayers during dehydration: effects on membrane phase 

behaviour. European Biophysics Journal, 2003. 32: p. 96-105. 

9. Crowe, J.H., et al., Stabilization of Dry Phospholipid Bilayers and Proteins by 

Sugars. Biochemical Journal, 1987. 242: p. 1-10. 

10. Crowe, L.M., Lessons from nature: the role of sugars in anhydrobiosis. 

Comparative Biochemistry and Physiology, A: Comparative Physiology, 2002. 

131: p. 505-513. 

11. Crowe, L.M., J.H. Crowe, and D. Chapman, Interaction of carbohydrates with dry 

dipalmitoylphosphatidylcholine. Archives of Biochemistry and Biophysics, 1985. 

236: p. 289-296. 

12. Crowe, J.H., J.F. Carpenter, and L.M. Crowe, The role of vitrification in 

anhydrobiosis. Annual Review of Plant Physiology, 1998. 60: p. 73-103. 

13. Crowe, J.H., et al., Interactions of sugars with membranes. Biochimica et 

Biophysica Acta, 1988. 947: p. 367-384. 

14. Crowe, J.H., L.M. Crowe, and D. Chapman, Preservation of Membranes in 

Anhydrobiotic Organisms: The Role of Trehalose. Science (Washington, D. C., 

1883-), 1984. 223: p. 701-703. 

15. Hoekstra, F.A., E.A. Golovina, and J. Buitink, Mechanisms of plant desiccation 

tolerance. Trends in Plant Science, 2001. 6(9): p. 431-438. 

16. Cacela, C. and D.K. Hincha, Low Amounts of Sucrose are Sufficient to Depress the 

Phase Transition Temperature of Dry Phosphatidylcholine, but Not for 

Lyoprotection of Liposomes. Biochemical Journal, 2006. 90: p. 2831-2842. 



 17 

17. Pereira, C.S., et al., Interaction of the Disaccharide Trehalose with a Phospholipid 

Bilayer: A Molecular Dynamics Study. Biophysical Journal, 2004. 86: p. 2273-

2285. 

18. Bryant, G., K.L. Koster, and J. Wolfe, Membrane behaviour in seeds and other 

systems at low water content: the various effects of solutes. Seed Science Research, 

2001. 11: p. 17-25. 

19. Koster, K.L. and G. Bryant, Dehydration in model membranes and protoplasts: 

contrasting effects at low, intermediate and high hydration, in Cold Hardiness in 

Plants: Molecular Genetics, Cell Biology and Physiology., T.H.H. Chen, M. 

Uemura, and S. Fujikawa, Editors. 2006. p. 219-234. 

20. Wolfe, J. and G. Bryant, Freezing, drying and/or vitrification of membrane-solute-

water systems. Cryobiology, 1999. 39: p. 103-129. 

21. Lenné, T., et al., How much solute is needed to inhibit the fluid to gel membrane 

phase transition at low hydration? Biochimica et Biophysica Acta, 2007. 1768: p. 

1019-1022. 

22. Lenné, T., et al., Location of sugars in multilamellar membranes at low hydration. 

Physica B, 2006. 385-386: p. 862-864. 

23. Pincet, F., E. Perez, and J. Wolfe, Do trehalose and dimethylsulphoxide affect 

inter-membrane forces? Cryobiology, 1994. 31: p. 531-539. 

24. Yoon, Y.H., J.M. Pope, and J. Wolfe, The effects of solutes on the freezing 

properties of and hydration forces in lipid lamellar phases. Biophysical Journal, 

1998. 74: p. 1949-1965. 

25. Demé, B. and T. Zemb, Measurement of sugar depletion from uncharged lamellar 

phases by SANS contrast variation. Journal of Applied Crystallography, 2000. 33: 

p. 569-573. 



 18 

26. Rand, R.P. and V.A. Parsegian, Hydration forces between phospholipid bilayers. 

Biochimica et Biophysica Acta, 1989. 988: p. 351-376. 

27. Wolfe, J., Lateral stresses in membranes at low water potential. Australian Journal 

of Plant Physiology, 1987. 14: p. 311-318. 

28. Bryant, G. and J. Wolfe, Interfacial forces in cryobiology and anhydrobiology. 

Cryo letters, 1992. 13: p. 23-36. 

29. Luzzati, V. and A. Tardieu, Lipid Phases: Structure and Structural Transitions. 

Annual Review of Physical Chemistry, 1974. 25: p. 79-94. 

30. Nagle, J.F. and S. Tristram-Nagle, Structure of Lipid Bilayers. Biochimica et 

Biophysica Acta, 2000. 1469: p. 159-195. 

31. Seddon, J.M., et al., X-ray diffraction study of the polymorphism of hydrated 

diacyl- and dialkylphosphatidylethanolamines. Biochemistry, 1984. 23: p. 2634-

2644. 

32. Rockland, L.B., Saturated Salt Solutions for Static Control of Relative Humidity 

between 5° and 40° C. Analytical Chemistry, 1960. 32(10): p. 1375-1376. 

33. Young, J.F., Humidity control in the laboratory using salt solutions-a review. 

Journal of Applied Chemistry, 1967. 17: p. 241-245. 

34. Lenné, T., The effects of solutes on the phase behaviour of phospholipid 

membranes, in School of Applied Sciences. 2008, RMIT University: Melbourne. 

35. Cookson, D., et al., Strategies for data collection and calibration with a pinhole-

geometry SAXS instrument on a synchrotron beamline. Journal of Synchrotron 

Radiation, 2006. 13: p. 440-444. 

36. Nagase, H., H. Ueda, and M. Nakagaki, Effect of water on lamellar structure of 

DPPC/sugar systems. Biochimica et Biophysica Acta, 1997. 1328: p. 197-206. 



 19 

37. Tenchov, B.G., L.J. Lis, and P.J. Quinn, Structural rearrangements during crystal-

liquid-crystal and gel-liquid-crystal phase transitions in aqueous dispersions of 

dipalmitoylphosphatidylethanolamine. A time-resolved X-ray diffraction study. 

Biochimica et Biophysica Acta (BBA) - Biomembranes, 1988. 942(2): p. 305-314. 

38. Caffrey, M., Kinetics and Mechanism of the Lamellar Gel/Lamellar Liquid-Crystal 

and Lamellar/Inverted Hexagonal Phase Transition in Phosphatidylethanolamine: 

A Real-Time X-Ray Diffraction Study Using Synchrotron Radiation. Biochemistry, 

1985. 24: p. 4826-4844. 

39. Sun, W.J., et al., Order and disorder in fully hydrated unoriented bilayers of gel-

phase dipalmitoylphosphatidylcholine. Physical Review E, 1994. 49(5): p. 4665. 

40. Tardieu, A., V. Luzzati, and F.C. Reman, Structure and Polymorphism of the 

Hydrocarbon Chains of Lipids: A study of Lecithin-Water Phases. Journal of 

Molecular Biology, 1973. 75: p. 711-733. 

41. Koster, K.L., et al., Interactions between soluble sugars and POPC (1-palmitoyl-2-

oleoyl-phosphatidylcholine) during dehydration: vitrification of sugars alters the 

phase behaviour of the phospholipid. Biochimica et Biophysica Acta, 1994. 1193: 

p. 143-150. 

42. Caffrey, M., LIPIDAT. A Database of Thermodynamic Data and Associated 

Inofrmation on Lipid Mesomorphic and Polymorphic Transitions. 1993, Boca 

Raton, FL.: CRC Press. 

 

 



 20 

 

Figure 1: A typical example of a set of intensity versus scattering vector plots 

during cooling from 70 °C to 20 °C at a rate of ~15 °C/min (sucrose:DPPC 

0.2:1,RH=13%). The transition from the fluid phase (70 °C, back of figure) to the gel 

phase (20 °C, front of figure) is indicated by (i) an increase in the number of inter-lamellar 

reflections in the gel phase, indicating increasing order; and (ii) a change in character of 

the wide angle intra-lipid reflection from a broad fluid peak at q~1.4 Å-1, to a sharper gel 

peak at q~1.5 Å-1. 
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Figure 2: Shows the main repeat spacing (d) and the chain-chain spacing (dc) for 

DPPC as a function of sugar:lipid ratio, for several values of relative humidity (RH): (a)  

20 °C (gel phase) in the presence of sucrose; (b) 20 °C (gel phase) in the presence of 

glucose; and (c) 70 °C (fluid phase) in the presence of sucrose. The sugar:lipid ratio is the 

ratio of sugar rings to lipid molecules. The symbols are for RH values of: ~0.1% (circles); 

5.5% (squares); 13% (up triangles); 32.5% (diamonds); 57.5% (down triangles). Filled 

symbols are the repeat spacing d (left axis) and open symbols are the chain-chain spacing 

dc (right axis). Lines are a guide to the eye. 
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Figure 3: Shows two estimates of the area per lipid, amax  (closed symbols) and agrav 

(open symbols), as functions of sugar:lipid ratio: (a) 20 °C (gel phase) in the presence of 

sucrose; (b) 20 °C (gel phase) in the presence of glucose. Symbols are as in figure 2. Lines 

are a guide to the eye. 
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Figure 4: Shows the transition temperatures measured using DSC [21] for three 

sucrose/lipid ratios (shown in the legend). The theoretical predictions, using literature 

values are given by the bold lines. The horizontal dashed line represents the fully hydrated 

transition temperature.  

 




