5,442 research outputs found

    Twin-free YBa2Cu3O7 films on (001) NdGaO3 showing isotropic electrical behaviour

    Get PDF
    Investigating the epitaxial nature of YBa2Cu3O7 films on NdGaO3 (001) by Rutherford backscattering (RBS) and X-ray diffraction (XRD) texture measurements we find that the films are almost single crystalline, in the sense that the a, b and c axes are uniquely defined with respect to those of NdGaO3. The crystalline perfection is, however, not reflected in the electrical properties of the films. Although we measure a Tc of 89.7 K, we did not observe the expected anisotropy in the resistivity. We interpret this to be due to Ga diffusion from the substrate into the film, which effectively blocks the chain conductivity

    Optimising incident management on the road

    Get PDF

    Digital Rights Management

    Get PDF

    AGCM Biases in Evaporation Regime: Impacts on Soil Moisture Memory and Land-Atmosphere Feedback

    Get PDF
    Because precipitation and net radiation in an atmospheric general circulation model (AGCM) are typically biased relative to observations, the simulated evaporative regime of a region may be biased, with consequent negative effects on the AGCM s ability to translate an initialized soil moisture anomaly into an improved seasonal prediction. These potential problems are investigated through extensive offline analyses with the Mosaic land surface model (LSM). We first forced the LSM globally with a 15-year observations-based dataset. We then repeated the simulation after imposing a representative set of GCM climate biases onto the forcings - the observational forcings were scaled so that their mean seasonal cycles matched those simulated by the NSIPP-1 (NASA Global Modeling and Assimilation Office) AGCM over the same period-The AGCM s climate biases do indeed lead to significant biases in evaporative regime in certain regions, with the expected impacts on soil moisture memory timescales. Furthermore, the offline simulations suggest that the biased forcing in the AGCM should contribute to overestimated feedback in certain parts of North America - parts already identified in previous studies as having excessive feedback. The present study thus supports the notion that the reduction of climate biases in the AGCM will lead to more appropriate translations of soil moisture initialization into seasonal prediction skill

    A Backtracking-Based Algorithm for Computing Hypertree-Decompositions

    Full text link
    Hypertree decompositions of hypergraphs are a generalization of tree decompositions of graphs. The corresponding hypertree-width is a measure for the cyclicity and therefore tractability of the encoded computation problem. Many NP-hard decision and computation problems are known to be tractable on instances whose structure corresponds to hypergraphs of bounded hypertree-width. Intuitively, the smaller the hypertree-width, the faster the computation problem can be solved. In this paper, we present the new backtracking-based algorithm det-k-decomp for computing hypertree decompositions of small width. Our benchmark evaluations have shown that det-k-decomp significantly outperforms opt-k-decomp, the only exact hypertree decomposition algorithm so far. Even compared to the best heuristic algorithm, we obtained competitive results as long as the hypergraphs are not too large.Comment: 19 pages, 6 figures, 3 table

    Using Historical Precipitation, Temperature, and Runoff Observations to Evaluate Evaporation Formulations in Land Surface Models

    Get PDF
    Key to translating soil moisture memory into subseasonal precipitation and air temperature forecast skill is a realistic treatment of evaporation in the forecast system used - in particular, a realistic treatment of how evaporation responds to variations in soil moisture. The inherent soil moisture-evaporation relationships used in today's land surface models (LSMs), however, arguably reflect little more than guesswork given the lack of evaporation and soil moisture data at the spatial scales represented by regional and global models. Here we present a new approach for evaluating this critical aspect of LSMs. Seasonally averaged precipitation is used as a proxy for seasonally-averaged soil moisture, and seasonally-averaged air temperature is used as a proxy for seasonally-averaged evaporation (e.g., more evaporative cooling leads to cooler temperatures)~ the relationship between historical precipitation and temperature measurements accordingly mimics in certain important ways nature's relationship between soil moisture and evaporation. Additional information on the relationship is gleaned from joint analysis of precipitation and streamflow measurements. An experimental framework that utilizes these ideas to guide the development of an improved soil moisture-evaporation relationship is described and demonstrated

    Land-Focused Changes in the Updated GEOS FP System (Version 5.25)

    Get PDF
    Many of the changes imposed in the January 2020 upgrade from Version 5.22 to 5.25 of the Goddard Earth Observing System (GEOS) Forward Processing (FP) analysis system were designed to increase the realism of simulated land variables. The changes, which consist of both land model parameter updates and improvements to the physical treatments employed for various land processes, have generally positive or neutral impacts on the character of the FP product, as documented here

    Nonsteady end effects in Hele-Shaw cells

    Get PDF

    Estimating firms' demand for agglomeration

    Get PDF
    • …
    corecore