53 research outputs found

    Microsomal superoxide anion production and NADPH-oxidation in a series of 22 aziridinylbenzoquinones

    Get PDF
    Several 2,5-bis(1-aziridinyl)-1,4-benzoquinones (BABQs) can be activated to alkylating species by reduction of the quinone moiety. On the other hand, cytotoxicity of these compounds can be induced by redox cycling. A series of BABQs and their methylated analogues (BMABQs) with different substituents at the 3- and 6-position was synthesized in order to investigate the influence of the substituents on the reduction of the quinone moiety and on the generation of superoxide anion radicals with rat liver microsomes. Superoxide anion production (SAP) ranged from 3.7±0.1 to 742±74 nmoles/min/mg protein with quinone concentrations of 10 nmoles/ml. NADPH-oxidation was measured under the same conditions and it correlated well (r = 0.88, P < 0.001) with SAP. It ranged from 1.4±0.2 to 494±60 nmoles/min/mg protein. SAP for 22 B(M)ABQs showed a good correlation with the summated electronic substituent constant θpara,total (r = 0.86, P < 0.001). It can be concluded that superoxide anion production by 22 B(M)ABQs in rat liver microsomes can be predicted from structural features of the compounds

    Limited transfer of threat bias following attentional retraining

    Get PDF
    Background and objectives Anxiety-related attentional bias for threat is considered an important risk factor for the development and maintenance of anxiety disorders. In line with this idea, recent studies have illustrated that experimentally induced changes in attentional bias have an impact on both non-clinical and clinical levels of anxiety. Still, little is known about the potential transfer of computerized training of attention to different components of attentional processing of threat. Methods In the present study, we trained participants to either avoid or attend towards threatening pictures in a dot probe task, and we examined whether this attentional training transferred to a measure of emotional interference. Results Despite our successful manipulation of attentional bias in the dot probe task, we found no generalization of the attentional training to the interference task. Limitations It is possible that our study lacked statistical power to reveal possible group differences in the interference task. Conclusions Our study shows that attentional training using the dot probe task may influence the amount of attention that is given to the spatial location of threat, but not necessarily the amount of attention that is given to the semantic content of stimuli

    Interprofessional teamwork in primary care: the effect of functional heterogeneity on performance and the role of leadership

    Get PDF
    This study aimed to unravel the complexity of interprofessional teamwork in primary care teams by testing the relationship between functional heterogeneity and team performance through the mediating role of information elaboration, and the moderating roles of directive leadership and participative leadership. The moderated mediation model was validated using survey data from 1105 professionals and 97 supervisors in 143 Dutch primary care teams. The results confirmed the model and showed a significant negative effect of functional heterogeneity on information elaboration, which in turn had a positive effect on team performance. Both directive and participative leadership moderated the negative effect of functional heterogeneity on information elaboration to the extent that the indirect negative effect of functional heterogeneity on team performance became insignificant under high levels of either directive or participative leadership. The theoretical implications of these findings for the literature on healthcare, team diversity, and leadership, as well as the practical implications for policy makers, educationalists and managers of primary care teams, are discussed

    Towards sustainable local welfare systems

    Get PDF
    Nowadays, many European countries delegate health and social care responsibilities from the national level to local authorities. In January 2015, the Netherlands similarly introduced a policy programme authorising municipalities to set their own social welfare policy. A specific feature of this programme is that it stimulates municipalities to implement teams wherein professionals from different disciplines are collectively responsible for a team’s decision‐making. This suggests that teams ideally have (a) high levels of functional heterogeneity (professionals from different disciplines) and (b) high levels of team autonomy (collective responsibility and decision‐making). Based on the policy programme, it can be further assumed that (a) information elaboration, (b) boundary management and (c) team cohesion in teams will improve. In practice, the majority (87%) of Dutch municipal

    Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics

    Get PDF
    Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing lysosomal photodestruction of normal breast epithelial cells. Thus, MDR modalities including ABCG2-dependent drug sequestration within EVs can be rationally converted to a pharmacologically lethal Trojan horse to selectively eradicate MDR cancer cells

    Why, how, when, and for whom does digital disconnection work? A process-based framework of digital disconnection

    Get PDF
    Digital disconnection has emerged as a concept describing the actions people take to limit their digital connectivity to enhance their well-being. To date, evidence on its effectiveness is mixed, leading to calls for greater consideration of why, how, when, and for whom digital disconnection works. This article responds to these calls, presenting a framework that differentiates four key harms that contribute to experiences of digital ill-being (time displacement, interference, role blurring, and exposure effects). Using these four harms as a starting point, the framework explains: (1) why people are motivated to digitally disconnect; (2) how specific disconnection strategies (i.e., placing limits on time, access, channels, and contents, interactions and features) may help them; and for whom (3) and under which conditions (when) these strategies can be effective

    Application of Ligninolytic Enzymes in the Production of Biofuels from Cotton Wastes

    Get PDF
    The application of ligninolytic fungi and enzymes is an option to overcome the issues related with the production of biofuels using cotton wastes. In this dissertation, the ligninolytic fungus and enzymes were evaluated as pretreatment for the biochemical conversion of Cotton Gin Trash (CGT) in ethanol and as a treatment for the transformation of cotton wastes biochar in other substances. In biochemical conversion, seven combinations of three pretreatments (ultrasonication, liquid hot water and ligninolytic enzymes) were evaluated on CGT. The best results were achieved by the sequential combination of ultrasonication, hot water, and ligninolytic enzymes with an improvement of 10% in ethanol yield. To improve these results, alkaline-ultrasonication was evaluated. Additionally, Fourier Transform Infrared (FT-IR) and principal component analysis (PCA) were employed as fast methodology to identify structural differences in the biomass. The combination of ultrasonication-alkali hydrolysis, hot liquid water, and ligninolytic enzymes using 15% of NaOH improved 35% ethanol yield compared with the original treatment. Additionally, FT-IR and PCA identified modifications in the biomass structure after different types of pretreatments and conditions. In thermal conversion, this study evaluated the biodepolymerization of cotton wastes biochar using chemical and biological treatments. The chemical depolymerization evaluated three chemical agents (KMnO4, H2SO4, and NaOH), with three concentrations and two environmental conditions. The sulfuric acid treatments performed the largest transformations of the biochar solid phase; whereas, the KMnO4 treatments achieved the largest depolymerizations. The compounds released into the liquid phase were correlated with fulvic and humic acids and silicon compounds. The biological depolymerization utilized four ligninolytic fungi Phanerochaete chrysosporium, Ceriporiopsis subvermispora, Postia placenta, and Bjerkandera adusta. The greatest depolymerization was obtained by C. subvermispora. The depolymerization kinetics of C. subvermispora evidenced the production of laccase and manganese peroxidase and a correlation between depolymerization and production of ligninolytic enzymes. The modifications obtained in the liquid and solid phases showed the production of humic and fulvic acids from the cultures with C. subvermispora. The results of this research are the initial steps for the development of new processes using the ligninolytic fungus and their enzymes for the production of biofuels from cotton wastes
    corecore