97 research outputs found

    Acute systemic loss of Mad2 leads to intestinal atrophy in adult mice

    Get PDF
    Chromosomal instability (CIN) is a hallmark of cancer, leading to aneuploid cells. To study the role that CIN plays in tumor evolution, several mouse models have been engineered over the last 2 decades. These models have unequivocally shown that systemic high-grade CIN is embryonic lethal. We and others have previously shown that embryonic lethality can be circumvented by provoking CIN in a tissue-specific fashion. In this study, we provoke systemic high-grade CIN in adult mice as an alternative to circumvent embryonic lethality. For this, we disrupt the spindle assembly checkpoint (SAC) by alleviating Mad2 or truncating Mps1, both essential genes for SAC functioning, with or without p53 inactivation. We find that disruption of the SAC leads to rapid villous atrophy, atypia and apoptosis of the epithelia of the jejunum and ileum, substantial weight loss, and death within 2-3 weeks after the start of the CIN insult. Despite this severe intestinal phenotype, most other tissues are unaffected, except for minor abnormalities in spleen, presumably due to the lower proliferation rate in these tissues. We conclude that high-grade CIN in vivo in adult mice is most toxic to the high cell turnover intestinal epithelia

    Modeling Phenotypic Heterogeneity of Glycogen Storage Disease Type 1a Liver Disease in Mice by Somatic CRISPR/CRISPR-associated protein 9-Mediated Gene Editing

    Get PDF
    BACKGROUND AND AIMS: Patients with glycogen storage disease type 1a (GSD‐1a) primarily present with life‐threatening hypoglycemia and display severe liver disease characterized by hepatomegaly. Despite strict dietary management, long‐term complications still occur, such as liver tumor development. Variations in residual glucose‐6‐phosphatase (G6PC1) activity likely contribute to phenotypic heterogeneity in biochemical symptoms and complications between patients. However, lack of insight into the relationship between G6PC1 activity and symptoms/complications and poor understanding of the underlying disease mechanisms pose major challenges to provide optimal health care and quality of life for GSD‐1a patients. Currently available GSD‐1a animal models are not suitable to systematically investigate the relationship between hepatic G6PC activity and phenotypic heterogeneity or the contribution of gene‐gene interactions (GGIs) in the liver. APPROACH AND RESULTS: To meet these needs, we generated and characterized a hepatocyte‐specific GSD‐1a mouse model using somatic CRISPR/CRISPR‐associated protein 9 (Cas9)–mediated gene editing. Hepatic G6pc editing reduced hepatic G6PC activity up to 98% and resulted in failure to thrive, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly, hepatic steatosis (HS), and increased liver tumor incidence. This approach was furthermore successful in simultaneously modulating hepatic G6PC and carbohydrate response element‐binding protein, a transcription factor that is activated in GSD‐1a and protects against HS under these conditions. Importantly, it also allowed for the modeling of a spectrum of GSD‐1a phenotypes in terms of hepatic G6PC activity, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly and HS. CONCLUSIONS: In conclusion, we show that somatic CRISPR/Cas9‐mediated gene editing allows for the modeling of a spectrum of hepatocyte‐borne GSD‐1a disease symptoms in mice and to efficiently study GGIs in the liver. This approach opens perspectives for translational research and will likely contribute to personalized treatments for GSD‐1a and other genetic liver diseases

    Spontaneous liver disease in wild-type C57BL/6JOlaHsd mice fed semisynthetic diet

    Get PDF
    Mouse models are frequently used to study mechanisms of human diseases. Recently, we observed a spontaneous bimodal variation in liver weight in C57BL/6JOlaHsd mice fed a semisynthetic diet. We now characterized the spontaneous variation in liver weight and its relationship with parameters of hepatic lipid and bile acid (BA) metabolism. In male C57BL/6JOlaHsd mice fed AIN-93G from birth to postnatal day (PN)70, we measured plasma BA, lipids, Very low-density lipoprotein (VLDL)-triglyceride (TG) secretion, and hepatic mRNA expression patterns. Mice were sacrificed at PN21, PN42, PN63 and PN70. Liver weight distribution was bimodal at PN70. Mice could be subdivided into two nonoverlapping groups based on liver weight: 0.6 SD 0.1 g (approximately one-third of mice, small liver; SL), and 1.0 SD 0.1 g (normal liver; NL; p<0.05). Liver histology showed a higher steatosis grade, inflammation score, more mitotic figures and more fibrosis in the SL versus the NL group. Plasma BA concentration was 14-fold higher in SL (p<0.001). VLDL-TG secretion rate was lower in SL mice, both absolutely (-66%, p<0.001) and upon correction for liver weight (-44%, p<0.001). Mice that would later have the SL-phenotype showed lower food efficiency ratios during PN21-28, suggesting the cause of the SL phenotype is present at weaning (PN21). Our data show that approximately one-third of C57BL/6JOlaHsd mice fed semisynthetic diet develop spontaneous liver disease with aberrant histology and parameters of hepatic lipid, bile acid and lipoprotein metabolism. Study designs involving this mouse strain on semisynthetic diets need to take the SL phenotype into account. Plasma lipids may serve as markers for the identification of the SL phenotype

    NF-kappa B p65 serine 467 phosphorylation sensitizes mice to weight gain and TNF alpha-or diet-induced inflammation

    Get PDF
    The NF-kappa B family of transcription factors is essential for an effective immune response, but also controls cell metabolism, proliferation and apoptosis. Its broad relevance and the high connectivity to diverse signaling pathways require a tight control of NF-kappa B activity. To investigate the control of NF-kappa B activity by phosphorylation of the NF-kappa B p65 subunit, we generated a knock-in mouse model in which serine 467 (the mouse homolog of human p65 serine 468) was replaced with a non-phosphorylatable alanine (S467A). This substitution caused reduced p65 protein synthesis and diminished TNF alpha-induced expression of a selected group of NF-kappa B dependent genes. Intriguingly, high-fat fed S467A mice displayed increased locomotor activity and energy expenditure, which coincided with a reduced body weight gain. Although glucose metabolism or insulin sensitivity was not improved, diet-induced liver inflammation was diminished in S467A mice. Altogether, this study demonstrates that phosphorylation of p65 serine 467 augment NF-kappa B activity and exacerbates various deleterious effects of overnutrition in mice.</p

    The hepatocyte IKK:NF-κB axis promotes liver steatosis by stimulating <i>de novo</i> lipogenesis and cholesterol synthesis

    Get PDF
    OBJECTIVE: Obesity-related chronic inflammation plays an important role in the development of Metabolic Associated Fatty Liver Disease (MAFLD). Although the contribution of the pro-inflammatory NF-κB signaling pathway to the progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is well-established, its role as an initiator of hepatic steatosis and the underlying mechanism remains unclear. Here, we investigated the hypothesis that the hepatocytic NF-κB signaling pathway acts as a metabolic regulator, thereby promoting hepatic steatosis development. METHODS: A murine model expressing a constitutively active form of IKKβ in hepatocytes (Hep-IKKβca) was used to activate hepatocyte NF-κB. In addition, IKKβca was also expressed in hepatocyte A20-deficient mice (IKKβca;A20(LKO)). A20 is an NF-κB-target gene that inhibits the activation of the NF-κB signaling pathway upstream of IKKβ. These mouse models were fed a sucrose-rich diet for 8 weeks. Hepatic lipid levels were measured and using [1–(13)C]-acetate de novo lipogenesis and cholesterol synthesis rate were determined. Gene expression analyses and immunoblotting were used to study the lipogenesis and cholesterol synthesis pathways. RESULTS: Hepatocytic NF-κB activation by expressing IKKβca in hepatocytes resulted in hepatic steatosis without inflammation. Ablation of hepatocyte A20 in Hep-IKKβca mice (IKKβca;A20(LKO) mice) exacerbated hepatic steatosis, characterized by macrovesicular accumulation of triglycerides and cholesterol, and increased plasma cholesterol levels. Both De novo lipogenesis (DNL) and cholesterol synthesis were found elevated in IKKβca;A20(LKO) mice. Phosphorylation of AMP-activated kinase (AMPK) - a suppressor in lipogenesis and cholesterol synthesis - was decreased in IKKβca;A20(LKO) mice. This was paralleled by elevated protein levels of hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) and reduced phosphorylation of HMG-CoA reductase (HMGCR) both key enzymes in the cholesterol synthesis pathway. Whereas inflammation was not observed in young IKKβca;A20(LKO) mice sustained hepatic NF-κB activation resulted in liver inflammation, together with elevated hepatic and plasma cholesterol levels in middle-aged mice. CONCLUSIONS: The hepatocytic IKK:NF-κB axis is a metabolic regulator by controlling DNL and cholesterol synthesis, independent of its central role in inflammation. The IKK:NF-κB axis controls the phosphorylation levels of AMPK and HMGCR and the protein levels of HMGCS1. Chronic IKK-mediated NF-κB activation may contribute to the initiation of hepatic steatosis and cardiovascular disease risk in MAFLD patients

    Deletion of SERF2 in mice delays embryonic development and alters amyloid deposit structure in the brain

    Get PDF
    In age-related neurodegenerative diseases, like Alzheimer's and Parkinson's, disease-specific proteins become aggregation-prone and form amyloid-like deposits. Depletion of SERF proteins ameliorates this toxic process in worm and human cell models for diseases. Whether SERF modifies amyloid pathology in mammalian brain, however, has remained unknown. Here, we generated conditional Serf2 knockout mice and found that full-body deletion of Serf2 delayed embryonic development, causing premature birth and perinatal lethality. Brain-specific Serf2 knockout mice, on the other hand, were viable, and showed no major behavioral or cognitive abnormalities. In a mouse model for amyloid-β aggregation, brain depletion of Serf2 altered the binding of structure-specific amyloid dyes, previously used to distinguish amyloid polymorphisms in the human brain. These results suggest that Serf2 depletion changed the structure of amyloid deposits, which was further supported by scanning transmission electron microscopy, but further study will be required to confirm this observation. Altogether, our data reveal the pleiotropic functions of SERF2 in embryonic development and in the brain and support the existence of modifying factors of amyloid deposition in mammalian brain, which offer possibilities for polymorphism-based interventions. </p

    T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice

    Get PDF
    Atherosclerosis is a chronic inflammatory disease driven by hypercholesterolemia. During aging, T cells accumulate cholesterol, potentially affecting inflammation. However, the effect of cholesterol efflux pathways mediated by ATP-binding cassette A1 and G1 (ABCA1/ABCG1) on T cell-dependent age-related inflammation and atherosclerosis remains poorly understood. In this study, we generate mice with T cell-specific Abca1/Abcg1-deficiency on the low-density-lipoprotein-receptor deficient (Ldlr-/-) background. T cell Abca1/Abcg1-deficiency decreases blood, lymph node, and splenic T cells, and increases T cell activation and apoptosis. T cell Abca1/Abcg1-deficiency induces a premature T cell aging phenotype in middle-aged (12-13 months) Ldlr-/- mice, reflected by upregulation of senescence markers. Despite T cell senescence and enhanced T cell activation, T cell Abca1/Abcg1-deficiency decreases atherosclerosis and aortic inflammation in middle-aged Ldlr-/- mice, accompanied by decreased T cells in atherosclerotic plaques. We attribute these effects to T cell apoptosis downstream of T cell activation, compromising T cell functionality. Collectively, we show that T cell cholesterol efflux pathways suppress T cell apoptosis and senescence, and induce atherosclerosis in middle-aged Ldlr-/- mice

    Rebalancing of mitochondrial homeostasis through an NAD+-SIRT1 pathway preserves intestinal barrier function in severe malnutrition.

    Get PDF
    BACKGROUND: The intestine of children with severe malnutrition (SM) shows structural and functional changes that are linked to increased infection and mortality. SM dysregulates the tryptophan-kynurenine pathway, which may impact processes such as SIRT1- and mTORC1-mediated autophagy and mitochondrial homeostasis. Using a mouse and organoid model of SM, we studied the repercussions of these dysregulations on malnutrition enteropathy and the protective capacity of maintaining autophagy activity and mitochondrial health. METHODS: SM was induced through feeding male weanling C57BL/6 mice a low protein diet (LPD) for 14-days. Mice were either treated with the NAD +-precursor, nicotinamide; an mTORC1-inhibitor, rapamycin; a SIRT1-activator, resveratrol; or SIRT1-inhibitor, EX-527. Malnutrition enteropathy was induced in enteric organoids through amino-acid deprivation. Features of and pathways to malnutrition enteropathy were examined, including paracellular permeability, nutrient absorption, and autophagic, mitochondrial, and reactive-oxygen-species (ROS) abnormalities. FINDINGS: LPD-feeding and ensuing low-tryptophan availability led to villus atrophy, nutrient malabsorption, and intestinal barrier dysfunction. In LPD-fed mice, nicotinamide-supplementation was linked to SIRT1-mediated activation of mitophagy, which reduced damaged mitochondria, and improved intestinal barrier function. Inhibition of mTORC1 reduced intestinal barrier dysfunction and nutrient malabsorption. Findings were validated and extended using an organoid model, demonstrating that resolution of mitochondrial ROS resolved barrier dysfunction. INTERPRETATION: Malnutrition enteropathy arises from a dysregulation of the SIRT1 and mTORC1 pathways, leading to disrupted autophagy, mitochondrial homeostasis, and ROS. Whether nicotinamide-supplementation in children with SM could ameliorate malnutrition enteropathy should be explored in clinical trials. FUNDING: This work was supported by the Bill and Melinda Gates Foundation, the Sickkids Research Institute, the Canadian Institutes of Health Research, and the University Medical Center Groningen

    Hyperglycaemia, pregnancy outcomes and maternal metabolic disease risk during pregnancy and lactation in a lean gestational diabetes mouse model

    Get PDF
    Abstract: Hyperglycaemia in pregnancy (HIP) is a pregnancy complication characterized by mild to moderate hyperglycaemia that negatively impacts short- and long-term health of mother and child. However, relationships between severity and timing of pregnancy hyperglycaemia and postpartum outcomes have not been systemically investigated. We investigated the impact of hyperglycaemia developing during pregnancy (gestational diabetes mellitus, GDM) or already present pre-mating (pre-gestational diabetes mellitus, PDM) on maternal health and pregnancy outcomes. GDM and PDM were induced in C57BL/6NTac mice by combined 60% high fat diet (HF) and low dose streptozotocin (STZ). Animals were screened for PDM prior to mating, and all underwent an oral glucose tolerance test on gestational day (GD)15. Tissues were collected at GD18 or at postnatal day (PN)15. Among HFSTZ-treated dams, 34% developed PDM and 66% developed GDM, characterized by impaired glucose-induced insulin release and inadequate suppression of endogenous glucose production. No increased adiposity or overt insulin resistance was observed. Furthermore, markers of non-alcoholic fatty liver disease (NAFLD) were significantly increased in PDM at GD18 and were positively correlated with basal glucose levels at GD18 in GDM dams. By PN15, NAFLD markers were also increased in GDM dams. Only PDM affected pregnancy outcomes such as litter size. Our findings indicate that GDM and PDM, resulting in disturbances of maternal glucose homeostasis, increase the risk of postpartum NAFLD development, related to the onset and severity of pregnancy hyperglycaemia. These findings signal a need for earlier monitoring of maternal glycaemia and more rigorous follow-up of maternal health after GDM and PDM pregnancy in humans. (Figure presented.). Key points: We studied the impact of high-fat diet/streptozotocin induced hyperglycaemia in pregnancy in mice and found that this impaired glucose tolerance and insulin release. Litter size and embryo survival were compromised by pre-gestational, but not by gestational, diabetes. Despite postpartum recovery from hyperglycaemia in a majority of dams, liver disease markers were further elevated by postnatal day 15. Maternal liver disease markers were associated with the severity of hyperglycaemia at gestational day 18. The association between hyperglycaemic exposure and non-alcoholic fatty liver disease signals a need for more rigorous monitoring and follow-up of maternal glycaemia and health in diabetic pregnancy in humans
    corecore