17 research outputs found

    Multimodal imaging of brain reorganization in hearing late learners of sign language

    Get PDF
    The neural plasticity underlying language learning is a process rather than a single event. However, the dynamics of training - induced brain reorganization have rarely been examined, especially using a multimodal magnetic resonance imaging approach, which allows us to study the relationship between functional and structural changes. We focus on sign language acquisition in hearing adults who underwent an 8‐month long course and five neuroimaging sessions. We assessed what neural changes occurred as participants learned a new language in a different modality - as reflected by task‐based activity, connectivity changes, and co‐occurring structural alterations. Major changes in the activity pattern appeared after just 3 months of learning, as indicated by increases in activation within the modality‐independent perisylvian language network, together with increased activation in modality‐dependent parieto‐occipital, visuospatial and motion‐sensitive regions. Despite further learning, no alterations in activation were detected during the following months. However, enhanced coupling between left‐lateralized occipital and inferior frontal regions was observed as the proficiency increased. Furthermore, an increase in gray matter volume was detected in the left inferior frontal gyrus which peaked at the end of learning. Overall, these results showed complexity and temporal distinctiveness of various aspects of brain reorganization associated with learning of new language in different sensory modality

    Does long-term high fat diet always lead to smaller hippocampi volumes, metabolite concentrations, and worse learning and memory? : a magnetic resonance and behavioral study in wistar rats

    Get PDF
    Background. Obesity is a worldwide epidemic with more than 600 million affected individuals. Human studies have demonstrated some alterations in brains of otherwise healthy obese individuals and elevated risk of neurodegenerative disease of old age; these studies have also pointed to slightly diminished memory and executive functions among healthy obese individuals. Similar findings were obtained in animal models of obesity induced by high fat diet. On the other hand, low carbohydrate high fat diets are currently promoted for losing weight (e.g., Atkin’s style diets). However, the long-term effects of such diets are not known. Additionally, high fat diets leading to (mild) ketonemia were shown to improve brain function in elderly humans and in some animal models. Aim. To evaluate the hypothesis that long-term use of a high fat diet was associated with decreases in spatial memory, smaller hippocampi and hippocampi metabolite concentrations in Wistar rats. Methods. Twenty five male Wistar rats were put on high fat diet (HFD; 60% calories from fat, 30% from carbohydrates) on their 55th day of life, while 25 control male rats (CONs) remained on chow. Adequate levels of essential nutrients were provided. Both groups underwent memory tests in 8-arm radial maze at 3rd, 6th, 9th, and 12th month. 1H magnetic resonance spectroscopy was employed to measure concentrations of tNAA (marker of neuronal integrity) at one month and one year, whereas MRI was used to evaluate hippocampal volumes. Results. Obese rats (OBRs) consumed similar amount of calories as CONs, but less proteins. However, their protein intake was within recommended amounts. Throughout the experiment OBRs had statistically higher concentrations of blood ketone bodies than CONs, but still within normal values. At post-mortem assessment, OBRs had 38% larger fat deposits than CONs (p<0.05), as evaluated by volume of epididymis fat, an acknowledged marker of fat deposits in rats. Contrary to our expectations, OBRs had better scores of memory behavioral tasks than CONs throughout the experiment. At one year, their hippocampi were by 2.6% larger than in CONs (p = 0.05), whereas concentration of tNAA was 9.8% higher (p = 0.014). Conclusion. Long-term HFD in our study resulted in better memory, larger hippocampal volumes, as well as higher hippocampal metabolite concentrations, possibly due to increased levels of blood ketone bodies. The results should be interpreted with caution, as results from animal models do not necessarily directly translate in human condition

    Association between real-time strategy video game learning outcomes and pre-training brain white matter structure: preliminary study

    Get PDF
    Abstract In recent years the association between video games, cognition, and the brain has been actively investigated. However, it is still unclear how individual predispositions, such as brain structure characteristics, play a role in the process of acquiring new skills, such as video games. The aim of this preliminary study was to investigate whether acquisition of cognitive-motor skills from the real-time strategy video game (StarCraft II) is associated with pre-training measures of brain white matter integrity. Results show that higher white matter integrity in regions (anterior limb of internal capsule, cingulum/hippocampus) and tracts (inferior longitudinal fasciculus) related with motoric functions, set shifting and visual decision making was associated with better Star Craft II performance. The presented findings inline with previous results and suggest that structural brain predispositions of individuals are related to the video game skill acquisition. Our study highlights the importance of neuroimaging studies that focus on white matter in predicting the outcomes of intervention studies and has implications for understanding the neural basis of the skill learning process

    Increased brain 1H-MRS glutamate and lactate signals following maximal aerobic capacity exercise in young healthy males: an exploratory study

    No full text
    Physical exercise involves increased neuronal activity of many brain structures, but 1H-MRS investigations on the effects of human brain glutamate (Glu) concentrations on acute exercise have been sparse. Previous studies consistently found increases in brain lactate (Lac) concentrations following graded exercise up to 85% of the predicted maximal heart rate. However, the reported effects on brain concentrations of glutamine and glutamate were not consistent. This study aimed to determine the effect of acute intense graded maximal exercise on 1H-MRS signals related to concentrations of Glu, glutamate+glutamine (Glx), and Lac. Young adult males were randomly divided into two groups and subjected to 1H-MRS when resting (NE) or shortly after cessation of the intense graded exercise intended to pass the anaerobic threshold (E). 1H-MRS spectra were acquired from the large voxel encompassing the occipito-parietal cortex only once. Estimates of Glu, Glx, and Lac concentrations were calculated in institutional units by normalizing to a spectroscopic signal originating from creatine-containing compounds (Cr). Concentrations of Glu, Glx, and Lac were respectively 11%, 12.6%, and 48.5% higher in E than in NE (p < 0.001). The increased brain Lac signal in the exercising group indicated that in our experiment, vigorous exercise resulted in passing the anaerobic threshold and lactate apparently entered the brain. Concomitantly glutamate-related resonance signals from the vicinity of the occipito-parietal cortex were significantly increased; physiological mechanisms underlying these phenomena require further study. Future studies should evaluate whether the normalization rate of these concentrations is a marker of general physical fitness

    Anterograde Transport in Axons of the Retinal Ganglion Cells and its Relationship to the Intraocular Pressure during Aging in Mice with Hereditary Pigmentary Glaucoma

    No full text
    <p><i>Purpose</i>: To establish a relationship between impairment of the anterograde axonal transport (AAT) in the axons of the retinal ganglion cells and the intraocular pressure (IOP) during aging in mice with hereditary glaucoma.</p> <p><i>Methods</i>: Quantitative <i>in vivo</i> approach based on manganese enhanced magnetic resonance imaging was developed in order to evaluate AAT in 3-, 6-, and 14-month old DBA/2J mice that develop age-dependent pigmentary glaucoma or age-matched C57Bl/6 mice that do not develop any retinal disease. Unilateral intravitreous administration of MnCl<sub>2</sub> solution was followed 24 h later by MRI performed to obtain spin-lattice relaxation times (<i>T</i><sub>1</sub>) for regions of interest encompassing the superior colliculi (SC) and the lateral geniculate nuclei (LGN). From the MRI scans, the estimates of Mn<sup>2+</sup> concentrations in SC and LGN contralateral to the injection site, hence the efficiency of AAT in ON, were obtained. IOP and eye morphology was also monitored.</p> <p><i>Results</i>: In C57Bl/6 mice, AAT to SC was decreasing with age, 30% decrease was noted between 3 and 14 months. The decrease in axonal transport to LGN was less pronounced in this strain. In 3-month-old DBA/2J mice, axonal transport to SC was 30% lower than in 3-month-old C57Bl/6 mice but no significant decrease was noted in 6-month-old animals. However, a decrease of over 95% in axonal transport both to SC and LGN was noted in 14-month-old DBA/2J mice. DBA/2J mice exhibited a sharp increase in IOP at 6 months, which reversed at 14 months but displayed age-dependent elongation of the eyeball and deepening of the anterior chamber.</p> <p><i>Conclusion</i>: Failure of AAT to SC of DBA/2J mice during development of pigmentary glaucoma does not follow closely changes in IOP and eye morphology. The relationship between IOP and AAT in optic nerve and tract is complex and may reflect preconditioning mechanism.</p
    corecore