30 research outputs found
Influence of Fabrication Technique on the Fiber Pushout Behavior in a Sapphire-Reinforced Nial Matrix Composite
Directional solidification (DS) of \u27\u27powder-cloth\u27\u27 (PC) processed sapphire-NiAl composites was carried out to examine the influence of fabrication technique on the fiber-matrix interfacial shear strength, measured using a fiber-pushout technique. The DS process replaced the fine, equiaxed NiAl grain structure of the PC composites with an oriented grain structure comprised of large columnar NiAl grains aligned parallel to the fiber axis, with fibers either completely engulfed within the NiAl grains or anchored at one to three grain boundaries. The load-displacement behavior during the pushout test exhibited an initial \u27\u27pseudoelastic\u27\u27 response, followed by an \u27\u27inelastic\u27\u27 response, and finally a \u27\u27frictional\u27\u27 sliding response. The fiber-matrix interfacial shear strength and the fracture behavior during fiber pushout were investigated using an interrupted pushout test and fractography, as functions of specimen thickness (240 to 730 mu m) and fabrication technique. The composites fabricated using the PC and the DS techniques had different matrix and interface structures and appreciably different interfacial shear strengths. In the DS composites, where the fiber-matrix interfaces were identical for all the fibers, the interfacial debond shear stresses were larger for the fibers embedded completely within the NiAl grains and smaller for the fibers anchored at a few grain boundaries. The matrix grain boundaries coincident on sapphire fibers were observed to be the preferred sites for crack formation and propagation. While the frictional sliding stress appeared to be independent of the fabrication technique, the interfacial debond shear stresses were larger for the DS composites compared to the PC composites. The study highlights the potential of the DS technique to grow single-crystal NiAl matrix composites reinforced with sapphire fibers, with fiber-matrix interfacial shear strength appreciably greater than that attainable by the current solid-state fabrication techniques
Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites
Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers
Direct proton decay of the isoscalar giant dipole resonance in 208Pb
The excitation and subsequent proton decay of the isoscalar giant dipole
resonance (ISGDR) in Pb have been investigated via the
Pb(Tl reaction at 400 MeV. Excitation
of the ISGDR has been identified by the difference-of-spectra method. The
enhancement of the ISGDR strength at high excitation energies observed in the
multipole-decomposition-analysis of the singles
Pb() spectra is not present in the excitation
energy spectrum obtained in coincidence measurement. The partial branching
ratios for direct proton decay of ISGDR to low-lying states of Tl have
been determined and the results are compared with predictions of continuum
random-phase-approximation (CRPA) calculations.Comment: 12 pages, 4 figures; accepted for publication in Physics Letters