71 research outputs found
Surgical smoke: modern mobile smoke evacuation systems improve occupational safety in the operating theatre.
OBJECTIVES
Evaluation of smoke capture efficiency of different mobile smoke evacuation devices with respect to volatile organic compounds and their noise emission.
METHODS
Electrosurgical incisions were performed on fresh porcine liver in an operating room with vertical laminar flow. The generated surgical smoke was analysed with proton-transfer-reaction mass spectrometry with and without the use of a mobile smoke evacuation system consisting of a smoke evacuator machine, a suction hose and a handpiece. The inlet of the mass spectrometer was positioned 40ācm above the specimen. Various devices were compared: a hard plastic funnel, a flexible foam funnel, an on-tip integrated aspirator of an electrosurgical knife and a standard secretion suction (Yankauer). Also, sound levels were measured at a distance of 40ācm from the handpieces' inlet.
RESULTS
The smoke capture efficiency of the secretion suction was only 53%, while foam funnel, plastic funnel and integrated aspirator were all significantly more effective with a clearance of 95%, 91% and 91%, respectively. The mean sound levels were 68 and 59 A-weighted decibels with the plastic and foam funnel, respectively, 66 A-weighted decibels with the integrated aspirator and 63 A-weighted decibels with the secretion suction.
CONCLUSIONS
Carcinogenic, mutagenic and reprotoxic volatile organic compounds in surgical smoke can be efficiently reduced by mobile smoke evacuation system, providing improved protection for medical personnel. Devices specifically designed for smoke evacuation are more efficient than standard suction tools. Noise exposure for the surgeon was lowest with the flexible foam funnel and higher with the other handpieces tested
Isotopic characterization of nitrogen oxides (NO\u3ci\u3ex\u3c/i\u3e), nitrous acid (HONO), and nitrate (\u3ci\u3ep\u3c/i\u3eNO3-) from laboratory biomass burning during FIREX
New techniques have recently been developed and applied to capture reactive nitrogen species, including nitrogen oxides (NOx D NOCNO2), nitrous acid (HONO), nitric acid (HNO3), and particulate nitrate (pNO3 ), for accurate measurement of their isotopic composition. Here, we report ā for the first time ā the isotopic composition of HONO from biomass burning (BB) emissions collected during the Fire Influence on Regional to Global Environments Experiment (FIREX, later evolved into FIREX-AQ) at the Missoula Fire Science Laboratory in the fall of 2016. We used our newly developed annular denuder system (ADS), which was verified to completely capture HONO associated with BB in comparison with four other high-timeresolution concentration measurement techniques, including mist chamberāion chromatography (MCāIC), open-path Fourier transform infrared spectroscopy (OP-FTIR), cavityenhanced spectroscopy (CES), and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF)
Isotopic characterization of nitrogen oxides (NOx), nitrous acid (HONO), and nitrate (pNO3ā) from laboratory biomass burning during FIREX
New techniques have recently been developed and applied to capture reactive nitrogen species, including nitrogen oxides (NOx=NO+NO2), nitrous acid (HONO), nitric acid (HNO3), and particulate nitrate (pNOā3), for accurate measurement of their isotopic composition. Here, we report ā for the first time ā the isotopic composition of HONO from biomass burning (BB) emissions collected during the Fire Influence on Regional to Global Environments Experiment (FIREX, later evolved into FIREX-AQ) at the Missoula Fire Science Laboratory in the fall of 2016. We used our newly developed annular denuder system (ADS), which was verified to completely capture HONO associated with BB in comparison with four other high-time-resolution concentration measurement techniques, including mist chamberāion chromatography (MCāIC), open-path Fourier transform infrared spectroscopy (OP-FTIR), cavity-enhanced spectroscopy (CES), and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF).
In 20 āstackā fires (direct emission within ā¼5ās of production by the fire) that burned various biomass materials from the western US, Ī“15NāNOx ranges from ā4.3āā° to +7.0āā°, falling near the middle of the range reported in previous work. The first measurements of Ī“15NāHONO and Ī“18OāHONO in biomass burning smoke reveal a range of ā5.3āā° to +5.8āā° and +5.2āā° to +15.2āā°, respectively. Both HONO and NOx are sourced from N in the biomass fuel, and Ī“15NāHONO and Ī“15NāNOx are strongly correlated (R2=0.89, p\u3c0.001), suggesting HONO is directly formed via subsequent chain reactions of NOx emitted from biomass combustion. Only 5 of 20 pNOā3 samples had a sufficient amount for isotopic analysis and showed Ī“15N and Ī“18O of pNOā3 ranging from ā10.6āā° to ā7.4āā° and +11.5āā° to +14.8āā°, respectively.
Our Ī“15N of NOx, HONO, and pNOā3 ranges can serve as important biomass burning source signatures, useful for constraining emissions of these species in environmental applications. The Ī“18O of HONO and NOā3 obtained here verify that our method is capable of determining the oxygen isotopic composition in BB plumes. The Ī“18O values for both of these species reflect laboratory conditions (i.e., a lack of photochemistry) and would be expected to track with the influence of different oxidation pathways in real environments. The methods used in this study will be further applied in future field studies to quantitatively track reactive nitrogen cycling in fresh and aged western US wildfire plumes
Recommended from our members
Primary emissions of glyoxal and methylglyoxal from laboratory measurements of open biomass burning
We report the emissions of glyoxal and methylglyoxal from the open burning of biomass during the NOAA-led 2016 FIREX intensive at the Fire Sciences Laboratory in Missoula, MT. Both compounds were measured using cavity-enhanced spectroscopy, which is both more sensitive and more selective than methods previously used to determine emissions of these two compounds. A total of 75 burns were conducted, using 33 different fuels in 8 different categories, providing a far more comprehensive dataset for emissions than was previously available. Measurements of methylglyoxal using our instrument suffer from spectral interferences from several other species, and the values reported here are likely underestimates, possibly by as much as 70 %. Methylglyoxal emissions were 2-3 times higher than glyoxal emissions on a molar basis, in contrast to previous studies that report methylglyoxal emissions lower than glyoxal emissions. Methylglyoxal emission ratios for all fuels averaged 3.6Ā±2.4 ppbv methylglyoxal (ppmv CO) 1, while emission factors averaged 0.66Ā±0.50 g methylglyoxal (kg fuel burned) 1. Primary emissions of glyoxal from biomass burning were much lower than previous laboratory measurements but consistent with recent measurements from aircraft. Glyoxal emission ratios for all fuels averaged 1.4Ā±0.7 ppbv glyoxal (ppmv CO) 1, while emission factors averaged 0.20Ā±0.12 g glyoxal (kg fuel burned) 1, values that are at least a factor of 4 lower than assumed in previous estimates of the global glyoxal budget. While there was significant variability in the glyoxal emission ratios and factors between the different fuel groups, glyoxal and formaldehyde were highly correlated during the course of any given fire, and the ratio of glyoxal to formaldehyde, RGF, was consistent across many different fuel types, with an average value of 0.068Ā±0.018. While RGF values for fresh emissions were consistent across many fuel types, further work is required to determine how this value changes as the emissions age
Electrocautery smoke exposure and efficacy of smoke evacuation systems in minimally invasive and open surgery: a prospective randomized study.
Worldwide, health care professionals working in operating rooms (ORs) are exposed to electrocautery smoke on a daily basis. Aims of this study were to determine composition and concentrations of electrocautery smoke in the OR using mass spectrometry. Prospective observational study at a tertiary care academic center, involving 122 surgical procedures of which 84 were 1:1 computer randomized to smoke evacuation system (SES) versus no SES use. Irritating, toxic, carcinogenic and mutagenic VOCs were observed in OR air, with some exceeding permissible exposure limits (OSHA/NIOSH). Mean total concentration of harmful compounds was 272.69Ā ppb (Ā±ā189Ā ppb) with a maximum total concentration of harmful substances of 8991Ā ppb (at surgeon level, no SES). Maximum total VOC concentrations were 1.6āĀ±ā1.2Ā ppm (minimally-invasive surgery) and 2.1āĀ±ā1.5Ā ppm (open surgery), and total maximum VOC concentrations were 1.8āĀ±ā1.3Ā ppm at the OR table 'at surgeon level' and 1.4āĀ±ā1.0Ā ppm 'in OR room air' away from the operating table. Neither difference was statistically significant. In open surgery, SES significantly reduced maximum concentrations of specific VOCs at surgeon level, including aromatics and aldehydes. Our data indicate relevant exposure of health care professionals to volatile organic compounds in the OR. Surgical technique and distance to cautery devices did not significantly reduce exposure. SES reduced exposure to specific harmful VOC's during open surgery.Trial Registration Number: NCT03924206 (clinicaltrials.gov)
The 105 month Swift-BAT all-sky hard X-ray survey
We present a catalog of hard X-ray sources detected in the first 105 months
of observations with the Burst Alert Telescope (BAT) coded mask imager on board
the Swift observatory. The 105 month Swift-BAT survey is a uniform hard X-ray
all-sky survey with a sensitivity of $8.40\times 10^{-12}\ {\rm erg\ s^{-1}\
cm^{-2}}7.24\times 10^{-12}\ {\rm erg\ s^{-1}\
cm^{-2}}$ over 50% of the sky in the 14-195 keV band. The Swift-BAT 105 month
catalog provides 1632 (422 new detections) hard X-ray sources in the 14-195 keV
band above the 4.8{\sigma} significance level. Adding to the previously known
hard X-ray sources, 34% (144/422) of the new detections are identified as
Seyfert AGN in nearby galaxies (z<0.2). The majority of the remaining
identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%,
43). As part of this new edition of the Swift-BAT catalog, we release
eight-channel spectra and monthly sampled light curves for each object in the
online journal and at the Swift-BAT 105 month Web site.Comment: Accepted for publication in ApJS. The Swift-BAT 105-month Survey
public website can be found at this URL:
https://swift.gsfc.nasa.gov/results/bs105mon
Recommended from our members
High-and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels
Biomass burning is a large source of volatile organic compounds (VOCs) and many other trace species to the atmosphere, which can act as precursors to secondary pollutants such as ozone and fine particles. Measurements performed with a proton-transfer-reaction time-of-flight mass spectrometer during the FIREX 2016 laboratory intensive were analyzed with positive matrix factorization (PMF), in order to understand the instantaneous variability in VOC emissions from biomass burning, and to simplify the description of these types of emissions. Despite the complexity and variability of emissions, we found that a solution including just two emission profiles, which are mass spectral representations of the relative abundances of emitted VOCs, explained on average 85% of the VOC emissions across various fuels representative of the western US (including various coniferous and chaparral fuels). In addition, the profiles were remarkably similar across almost all of the fuel types tested. For example, the correlation coefficient r2 of each profile between ponderosa pine (coniferous tree) and manzanita (chaparral) is higher than 0.84. The compositional differences between the two VOC profiles appear to be related to differences in pyrolysis processes of fuel biopolymers at high and low temperatures. These pyrolysis processes are thought to be the main source of VOC emissions. High-temperature and low-temperature pyrolysis processes do not correspond exactly to the commonly used flaming and smoldering categories as described by modified combustion efficiency (MCE). The average atmospheric properties (e.g., OH reactivity, volatility, etc) of the high-and low-temperature profiles are significantly different. We also found that the two VOC profiles can describe previously reported VOC data for laboratory and field burns
Non-methane organic gas emissions from biomass burning: Identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment
Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90Äā¬-% of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (IÄ\u27 CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, ofÄā¬ & Äā¬-0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire
Recommended from our members
Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment
Volatile and intermediate-volatility non-methane organic gases (NMOGs) released from biomass burning were measured during laboratory-simulated wildfires by proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). We identified NMOG contributors to more than 150 PTR ion masses using gas chromatography (GC) pre-separation with electron ionization, H3O+ chemical ionization, and NO+ chemical ionization, an extensive literature review, and time series correlation, providing higher certainty for ion identifications than has been previously available. Our interpretation of the PTR-ToF mass spectrum accounts for nearly 90Äā¬-% of NMOG mass detected by PTR-ToF across all fuel types. The relative contributions of different NMOGs to individual exact ion masses are mostly similar across many fires and fuel types. The PTR-ToF measurements are compared to corresponding measurements from open-path Fourier transform infrared spectroscopy (OP-FTIR), broadband cavity-enhanced spectroscopy (ACES), and iodide ion chemical ionization mass spectrometry (IÄ\u27 CIMS) where possible. The majority of comparisons have slopes near 1 and values of the linear correlation coefficient, R2, ofÄā¬ & Äā¬-0.8, including compounds that are not frequently reported by PTR-MS such as ammonia, hydrogen cyanide (HCN), nitrous acid (HONO), and propene. The exceptions include methylglyoxal and compounds that are known to be difficult to measure with one or more of the deployed instruments. The fire-integrated emission ratios to CO and emission factors of NMOGs from 18 fuel types are provided. Finally, we provide an overview of the chemical characteristics of detected species. Non-aromatic oxygenated compounds are the most abundant. Furans and aromatics, while less abundant, comprise a large portion of the OH reactivity. The OH reactivity, its major contributors, and the volatility distribution of emissions can change considerably over the course of a fire
Recommended from our members
The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study
Reactive nitrogen (Nr, defined as all nitrogencontaining compounds except for N2 and N2O) is one of the most important classes of compounds emitted from wildfire, as Nr impacts both atmospheric oxidation processes and particle formation chemistry. In addition, several Nr compounds can contribute to health impacts from wildfires. Understanding the impacts of wildfire on the atmosphere requires a thorough description of Nr emissions. Total reactive nitrogen was measured by catalytic conversion to NO and detection by NO-O3 chemiluminescence together with individual Nr species during a series of laboratory fires of fuels characteristic of western US wildfires, conducted as part of the FIREX Fire Lab 2016 study. Data from 75 stack fires were analyzed to examine the systematics of nitrogen emissions. The measured Nr = total-carbon ratios averaged 0.37 % for fuels characteristic of western North America, and these gas-phase emissions were compared with fuel and residue N=C ratios and mass to estimate that a mean (Ā±SD) of 0.68 (Ā±0:14) of fuel nitrogen was emitted as N2 and N2O. The Nr detected as speciated individual compounds included the following: nitric oxide (NO), nitrogen dioxide (NO2), nitrous acid (HONO), isocyanic acid (HNCO), hydrogen cyanide (HCN), ammonia (NH3), and 44 nitrogen-containing volatile organic compounds (NVOCs). The sum of these measured individual Nr compounds averaged 84.8 (Ā±9:8) % relative to the total Nr, and much of the 15.2 % unaccounted Nr is expected to be particle-bound species, not included in this analysis. A number of key species, e.g., HNCO, HCN, and HONO, were confirmed not to correlate with only flaming or with only smoldering combustion when using modified combustion efficiency, MCE D CO2=.CO C CO2/, as a rough indicator. However, the systematic variations in the abundance of these species relative to other nitrogen-containing species were successfully modeled using positive matrix factorization (PMF). Three distinct factors were found for the emissions from combined coniferous fuels: a combustion factor (Comb-N) (800-1200 Ā°C) with emissions of the inorganic compounds NO, NO2, and HONO, and a minor contribution from organic nitro compounds (R-NO2); a high-temperature pyrolysis factor (HT-N) (500-800 Ā°C) with emissions of HNCO, HCN, and nitriles; and a low-temperature pyrolysis factor (LT-N) (\u3c 500 Ā°C) with mostly ammonia and NVOCs. The temperature ranges specified are based on known com bustion and pyrolysis chemistry considerations. The mix of emissions in the PMF factors from chaparral fuels (manzanita and chamise) had a slightly different composition: the Comb-N factor was also mostly NO, with small amounts of HNCO, HONO, and NH3; the HT-N factor was dominated by NO2 and had HONO, HCN, and HNCO; and the LT-N factor was mostly NH3 with a slight amount of NO contributing. In both cases, the Comb-N factor correlated best with CO2 emission, while the HT-N factors from coniferous fuels correlated closely with the high-temperature VOC factors recently reported by Sekimoto et al. (2018), and the LT-N had some correspondence to the LT-VOC factors. As a consequence, CO2 is recommended as a marker for combustion Nr emissions, HCN is recommended as a marker for HT-N emissions, and the family NH3 = particle ammonium is recommended as a marker for LT-N emissions
- ā¦