157 research outputs found

    A Cognitive Model of an Epistemic Community: Mapping the Dynamics of Shallow Lake Ecosystems

    Full text link
    We used fuzzy cognitive mapping (FCM) to develop a generic shallow lake ecosystem model by augmenting the individual cognitive maps drawn by 8 scientists working in the area of shallow lake ecology. We calculated graph theoretical indices of the individual cognitive maps and the collective cognitive map produced by augmentation. The graph theoretical indices revealed internal cycles showing non-linear dynamics in the shallow lake ecosystem. The ecological processes were organized democratically without a top-down hierarchical structure. The steady state condition of the generic model was a characteristic turbid shallow lake ecosystem since there were no dynamic environmental changes that could cause shifts between a turbid and a clearwater state, and the generic model indicated that only a dynamic disturbance regime could maintain the clearwater state. The model developed herein captured the empirical behavior of shallow lakes, and contained the basic model of the Alternative Stable States Theory. In addition, our model expanded the basic model by quantifying the relative effects of connections and by extending it. In our expanded model we ran 4 simulations: harvesting submerged plants, nutrient reduction, fish removal without nutrient reduction, and biomanipulation. Only biomanipulation, which included fish removal and nutrient reduction, had the potential to shift the turbid state into clearwater state. The structure and relationships in the generic model as well as the outcomes of the management simulations were supported by actual field studies in shallow lake ecosystems. Thus, fuzzy cognitive mapping methodology enabled us to understand the complex structure of shallow lake ecosystems as a whole and obtain a valid generic model based on tacit knowledge of experts in the field.Comment: 24 pages, 5 Figure

    Memories of childhood in post-war Grimsby

    Get PDF
    This paper details the vivid memories of the author’s childhood in the fishing port of Grimsby, shortly after the Second World War. It was a time of shortages, overcrowding, improvisation and cannibalisation of anything that could be re-used. In time it became a period of reconstruction but not without its upheavals and difficulties. It begins in the ‘old town’ of workers’ small terrace houses, typically in a poor state of repair. Then it moves to the ‘new’ council estates. Similarly, the narrative also begins with a ‘Victorian’ technology of steam, coal and horses with very few petrol-engined vehicles and moves to the very beginnings of early consumer society. The principal analytic content of the paper concerns the status of what is clearly a ‘personal history’ – if that is not too great a contradiction – or as the author suggests: my story. The obvious ‘critical’ response – that it could have been otherwise – is contrasted against the suggestion that this story is a non-negotiable foundation of the author’s identity and that this ‘critical’ response is not appropriate. Some of the interdisciplinary options thrown up by this problem are considered

    Models and metaphors: complexity theory and through-life management in the built environment

    Get PDF
    Complexity thinking may have both modelling and metaphorical applications in the through-life management of the built environment. These two distinct approaches are examined and compared. In the first instance, some of the sources of complexity in the design, construction and maintenance of the built environment are identified. The metaphorical use of complexity in management thinking and its application in the built environment are briefly examined. This is followed by an exploration of modelling techniques relevant to built environment concerns. Non-linear and complex mathematical techniques such as fuzzy logic, cellular automata and attractors, may be applicable to their analysis. Existing software tools are identified and examples of successful built environment applications of complexity modelling are given. Some issues that arise include the definition of phenomena in a mathematically usable way, the functionality of available software and the possibility of going beyond representational modelling. Further questions arising from the application of complexity thinking are discussed, including the possibilities for confusion that arise from the use of metaphor. The metaphor of a 'commentary machine' is suggested as a possible way forward and it is suggested that an appropriate linguistic analysis can in certain situations reduce perceived complexity

    Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector

    Get PDF
    YesThe prevalence of big data is starting to spread across the public and private sectors however, an impediment to its widespread adoption orientates around a lack of appropriate big data analytics (BDA) and resulting skills to exploit the full potential of big data availability. In this paper, we propose a novel BDA to contribute towards this void, using a fuzzy cognitive map (FCM) approach that will enhance decision-making thus prioritising IT service procurement in the public sector. This is achieved through the development of decision models that capture the strengths of both data analytics and the established intuitive qualitative approach. By taking advantages of both data analytics and FCM, the proposed approach captures the strength of data-driven decision-making and intuitive model-driven decision modelling. This approach is then validated through a decision-making case regarding IT service procurement in public sector, which is the fundamental step of IT infrastructure supply for publics in a regional government in the Russia federation. The analysis result for the given decision-making problem is then evaluated by decision makers and e-government expertise to confirm the applicability of the proposed BDA. In doing so, demonstrating the value of this approach in contributing towards robust public decision-making regarding IT service procurement.EU FP7 project Policy Compass (Project No. 612133

    Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses

    Get PDF
    Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-ÎşB and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype

    What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology

    Get PDF
    Stochastic resonance is said to be observed when increases in levels of unpredictable fluctuations—e.g., random noise—cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease. This counterintuitive effect relies on system nonlinearities and on some parameter ranges being “suboptimal”. Stochastic resonance has been observed, quantified, and described in a plethora of physical and biological systems, including neurons. Being a topic of widespread multidisciplinary interest, the definition of stochastic resonance has evolved significantly over the last decade or so, leading to a number of debates, misunderstandings, and controversies. Perhaps the most important debate is whether the brain has evolved to utilize random noise in vivo, as part of the “neural code”. Surprisingly, this debate has been for the most part ignored by neuroscientists, despite much indirect evidence of a positive role for noise in the brain. We explore some of the reasons for this and argue why it would be more surprising if the brain did not exploit randomness provided by noise—via stochastic resonance or otherwise—than if it did. We also challenge neuroscientists and biologists, both computational and experimental, to embrace a very broad definition of stochastic resonance in terms of signal-processing “noise benefits”, and to devise experiments aimed at verifying that random variability can play a functional role in the brain, nervous system, or other areas of biology
    • …
    corecore