19 research outputs found

    Materiaalien spektroskooppisia ominaisuuksia elektronirakennelaskuilla

    Get PDF
    The response of materials to electromagnetic radiation is important for two reasons: it is crucial for many applications and can also be used to study the microscopic and electronic structure that determine other properties of materials. Calculations on the quantum-mechanical state of the electrons, the electronic structure, are useful for interpreting the results of experiments where materials are probed by electromagnetic radiation. This thesis consists of three studies where electronic-structure calculations have been employed in investigating materials and their response to electromagnetic radiation. In the first paper, x-ray Compton-profile difference between solid and liquid phases of ionic liquid [mmim]Cl is calculated. The structural changes that affect this Compton-profile difference are analyzed. In the second paper, the dopant configuration and band structure of an intermediate-band solar-cell material Fe-doped CuGaS2 is studied, along with optical absorption spectra. In the third paper, excitons in layered materials are investigated using a hexagonal boron nitride as an example material, and the connection between bulk and monolayer excitons is discussed. These studies provide a view on the possibilities of electronic-structure calculations for understanding the spectroscopic properties of materials from atomic and electronic level.Materiaalien vaste sähkömagneettiseen säteilyyn on tärkeää kahdesta syystä: se on tärkeää monille sovelluksille ja sen avulla voidaan tutkia mikroskoopista ja elektronirakennetta, jotka määrittävät muita materiaalien ominaisuuksia. Kvanttimekaaniset laskut, jotka määrittelevät aineen elektronien tilan, eli elektronirakenteen, ovat avainasemassa tulkittaessa mittauksia, jotka hyödyntävät aineen ja sähkömagneettisen säteilyn vuorovaikutusta. Tämä väitöskirja koostuu kolmesta osajulkaisusta, joissa elektronirakennelaskuja on sovellettu materiaalien ja niiden säteilyvasteen tutkimisessa. Ensimmäisessä osajulkaisussa laskettiin Compton-profiilien erotus kide- ja nestefaasin välillä, ja analysoitiin rakennemuutoksia, jotka vaikuttavat kyseiseen erotusprofiiliin. Toisessa osajulkaisussa tutkittiin douppausatomien muodostamia rakenteita, vyörakennetta sekä optista absorptiota rautadoupatussa CuGaS2:ssa, joka on välivyöaurinkokennomateriaali. Kolmannessa osajulkaisussa tutkittiin eksitoneja kerrosmateriaaleissa käyttäen heksagonaalista boorinitridiä esimerkkimateriaalina, ja käsiteltiin kiinteän aineen ja yhden atomikerroksen eksitonien yhteyttä. Väitöskirjassa tehty työ havainnollistaa elektronirakennelaskujen mahdollisuuksia aineen spektroskooppisten ominaisuuksien ymmärtämisessä elektroni- ja atomitasolta lähtien

    Compton-sironnan mallintaminen ioninesteistä

    Get PDF
    Ioninesteet ovat suoloja, joilla on matala sulamislämpötila (alle noin 100 °C). Niillä on useita hyödyllisiä ominaisuuksia ja lukuisia mahdollisia sovelluksia. Tarkempi tieto ioninesteiden atomitason rakenteesta on kuitenkin tärkeää niiden ominaisuuksien ja mahdollisuuksien ymmärtämiseksi sekä sovellusten kehittämiseksi. Tässä työssä tutkittiin 1-3-dimetyyli-imidazoliumkloridia ([mmim]Cl), joka on molekyylimassaltaan kevyt prototyyppinen ionineste. Tässä tutkielmassa hyödynnettiin epäelastista röntgensirontaa uuden informaation saamiseksi. Epäelastisessa röntgensironnassa fotoni siroaa elektronisysteemistä luovuttaen sekä energiaa että liikemäärää. Fotonin epäelastista sirontaa kutsutaan Compton-sironnaksi, kun energian- ja liikemääränsiirto on suuri. Compton-sirontaa voidaan käyttää aineen atomi- ja molekyylitason rakenteen tutkimisessa, sillä Compton-sirontakokeissa määritettävä suure, Compton-profiili, on herkkä atomien välisen geometrian muutoksille. Mittaustulosten tulkinta on kuitenkin haastavaa ja laskennallisella mallintamisella on siinä suuri rooli. Tässä tutkielmassa laskettiin [mmim]Cl:n neste- ja kidefaasien isotrooppisten Compton-profiilien erotus (erotusprofiili). Tiettyjen oletusten ollessa voimassa Compton-profiili riippuu elektronien liikemäärätiheydestä, joten profiilit voidaan määrittää aineen perustilaa kuvaavien elektronirakennelaskujen avulla. Tässä tutkielmassa elektronirakennelaskuissa käytettiin Kohn-Sham-tiheysfunktionaaliteoriaa, periodisia reunaehtoja ja Gaussisia kantajoukkoja elektronitiloille. Lisäksi laskennan tarkkuuteen vaikuttavia tekijöitä arvioitiin. Liikemäärähilan tiheydellä sekä vaihto-korrelaatiofunktionaalin ja kantajoukon valinnalla havaittiin olevan suuri vaikutus laskettuun erotusprofiiliin. Nämä tekijät olivat selkeästi merkittävämpiä kuin nesterakenteiden äärellisestä määrästä johtuva tilastollinen epätarkkuus. Erotusprofiilin tulkitsemiseksi kiderakenteesta otettuun yhteen [mmim]Cl-ionipariin tehtiin muutoksia käytetyn nesterakenteen perusteella ja tarkasteltiin näiden muutosten vaikutusta Compton-profiiliin. Sekä molekylääristen ionien sisäisen rakenteen että ionien välisen geometrian muutosten havaittiin vaikuttavan merkittävästi laskettuun erotusprofiiliin. Tässä työssä esitetyt tulokset auttavat kokeellisen erotusprofiiliin tulkinnassa ja selittämisessä

    Excitons in van der Waals materials : From monolayer to bulk hexagonal boron nitride

    Get PDF
    We present a general picture of the exciton properties of layered materials in terms of the excitations of their single-layer building blocks. To this end, we derive a model excitonic Hamiltonian by drawing an analogy with molecular crystals, which are other prototypical van der Waals materials. We employ this simplified model to analyze in detail the excitation spectrum of hexagonal boron nitride (hBN) that we have obtained from the ab initio solution of the many-body Bethe-Salpeter equation as a function of momentum. In this way, we identify the character of the lowest-energy excitons in hBN, discuss the effects of the interlayer hopping and the electron-hole exchange interaction on the exciton dispersion, and illustrate the relation between exciton and plasmon excitations in layered materials.Peer reviewe

    Density functional simulation of resonant inelastic X-ray scattering experiments in liquids : acetonitrile

    Get PDF
    In this paper we report an experimental and computational study of liquid acetonitrile (H3C-C[triple bond, length as m-dash]N) by resonant inelastic X-ray scattering (RIXS) at the N K-edge. The experimental spectra exhibit clear signatures of the electronic structure of the valence states at the N site and incident-beam-polarization dependence is observed as well. Moreover, we find fine structure in the quasielastic line that is assigned to finite scattering duration and nuclear relaxation. We present a simple and light-to-evaluate model for the RIXS maps and analyze the experimental data using this model combined with ab initio molecular dynamics simulations. In addition to polarization-dependence and scattering-duration effects, we pinpoint the effects of different types of chemical bonding to the RIXS spectrum and conclude that the H2C-C[double bond, length as m-dash]NH isomer, suggested in the literature, does not exist in detectable quantities. We study solution effects on the scattering spectra with simulations in liquid and in vacuum. The presented model for RIXS proved to be light enough to allow phase-space-sampling and still accurate enough for identification of transition lines in physical chemistry research by RIXS.In this paper we report an experimental and computational study of liquid acetonitrile (H3C-C equivalent to N) by resonant inelastic X-ray scattering (RIXS) at the N K-edge. The experimental spectra exhibit clear signatures of the electronic structure of the valence states at the N site and incident-beam-polarization dependence is observed as well. Moreover, we find fine structure in the quasielastic line that is assigned to finite scattering duration and nuclear relaxation. We present a simple and light-to-evaluate model for the RIXS maps and analyze the experimental data using this model combined with ab initio molecular dynamics simulations. In addition to polarization-dependence and scattering-duration effects, we pinpoint the effects of different types of chemical bonding to the RIXS spectrum and conclude that the H2C-C equivalent to NH isomer, suggested in the literature, does not exist in detectable quantities. We study solution effects on the scattering spectra with simulations in liquid and in vacuum. The presented model for RIXS proved to be light enough to allow phase-space-sampling and still accurate enough for identification of transition lines in physical chemistry research by RIXS.Peer reviewe

    Exciton energy-momentum map of hexagonal boron nitride

    Get PDF
    Understanding and controlling the way excitons propagate in solids is a key for tailoring materials with improved optoelectronic properties. A fundamental step in this direction is the determination of the exciton energy-momentum dispersion. Here, thanks to the solution of the parameter-free Bethe- Salpeter equation (BSE), we draw and explain the exciton energy-momentum map of hexagonal boron nitride (h-BN) in the first three Brillouin zones. We show that h-BN displays strong excitonic effects not only in the optical spectra at vanishing momentum q\mathbf{q}, as previously reported, but also at large q\mathbf{q}. We validate our theoretical predictions by assessing the calculated exciton map by means of an inelastic x-ray scattering (IXS) experiment. Moreover, we solve the discrepancies between previous experimental data and calculations, proving then that the BSE is highly accurate through the whole momentum range. Therefore, these results put forward the combination BSE and IXS as the tool of choice for addressing the exciton dynamics in complex materials.Understanding and controlling the way excitons propagate in solids is a key for tailoring materials with improved optoelectronic properties. A fundamental step in this direction is the determination of the exciton energy-momentum dispersion. Here, thanks to the solution of the parameter-free Bethe-Salpeter equation (BSE), we draw and explain the exciton energy-momentum map of hexagonal boron nitride (h-BN) in the first three Brillouin zones. We show that h-BN displays strong excitonic effects not only in the optical spectra at vanishing momentum q, as previously reported, but also at large q. We validate our theoretical predictions by assessing the calculated exciton map by means of an inelastic x-ray scattering (IXS) experiment. Moreover, we solve the discrepancies between previous experimental data and calculations, proving then that the BSE is highly accurate through the whole momentum range. Therefore, these results put forward the combination BSE and IXS as the tool of choice for addressing the exciton dynamics in complex materials.Peer reviewe

    Short-range excitonic phenomena in low-density metals

    No full text
    Excitonic effects in metals are commonly supposed to be weak, because the Coulomb interaction is strongly screened. We investigate the low-density regime of the homogeneous electron gas, where low-energy collective excitations and ghost modes were anticipated. Using the Bethe-Salpeter equation (BSE), we show that both phenomena exist thanks to reduced screening at short distances. This is not captured by common approximations used in ab initio BSE calculations, but requires vertex corrections that take the fermionic nature of charges into account. The electron-hole wavefunction of the low-energy modes shows strong and very anisotropic electron-hole correlation, which speaks for an excitonic character of these modes. The fact that short-range physics is at the origin of these phenomena explains why, on the other hand, also the simple adiabatic local density approximation to time-dependent density functional theory can capture these effects

    Screened extended Koopmans' theorem: photoemission at weak and strong correlation

    No full text
    By introducing electron screening in the extended Koopmans' theorem we correctly describe the band gap opening in weakly as well as strongly correlated systems. We show this by applying our method to bulk LiH, Si, and paramagnetic as well as antiferromagnetic NiO. Although incorrect features remain in the full photoemission spectra, this is a remarkable result for an ab-initio electronic structure method and it opens the way to a unified description of photoemission spectra at weak and strong correlation
    corecore