692 research outputs found

    Scalar field theory on κ\kappa-Minkowski space-time and Doubly Special Relativity

    Full text link
    In this paper we recall the construction of scalar field action on κ\kappa-Minkowski space-time and investigate its properties. In particular we show how the co-product of κ\kappa-Poincar\'e algebra of symmetries arises from the analysis of the symmetries of the action, expressed in terms of Fourier transformed fields. We also derive the action on commuting space-time, equivalent to the original one. Adding the self-interaction Φ4\Phi^4 term we investigate the modified conservation laws. We show that the local interactions on κ\kappa-Minkowski space-time give rise to 6 inequivalent ways in which energy and momentum can be conserved at four-point vertex. We discuss the relevance of these results for Doubly Special Relativity.Comment: 17 pages; some editing done, final version to be published in Int. J. Mod. Phys.

    Using Linguistic Features to Estimate Suicide Probability of Chinese Microblog Users

    Full text link
    If people with high risk of suicide can be identified through social media like microblog, it is possible to implement an active intervention system to save their lives. Based on this motivation, the current study administered the Suicide Probability Scale(SPS) to 1041 weibo users at Sina Weibo, which is a leading microblog service provider in China. Two NLP (Natural Language Processing) methods, the Chinese edition of Linguistic Inquiry and Word Count (LIWC) lexicon and Latent Dirichlet Allocation (LDA), are used to extract linguistic features from the Sina Weibo data. We trained predicting models by machine learning algorithm based on these two types of features, to estimate suicide probability based on linguistic features. The experiment results indicate that LDA can find topics that relate to suicide probability, and improve the performance of prediction. Our study adds value in prediction of suicidal probability of social network users with their behaviors

    Scalar field propagation in the phi^4 kappa-Minkowski model

    Full text link
    In this article we use the noncommutative (NC) kappa-Minkowski phi^4 model based on the kappa-deformed star product, ({*}_h). The action is modified by expanding up to linear order in the kappa-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the kappa-Minkowski is specifically kappa-deformed. Thus our prescription in fact represents hybrid approach between standard quantum field theory (QFT) and NCQFT on the kappa-deformed Minkowski spacetime, resulting in a kappa-effective model. The propagation is analyzed in the framework of the two-point Green's function for low, intermediate, and for the Planckian propagation energies, respectively. Semiclassical/hybrid behavior of the first order quantum correction do show up due to the kappa-deformed momentum conservation law. For low energies, the dependence of the tadpole contribution on the deformation parameter a drops out completely, while for Planckian energies, it tends to a fixed finite value. The mass term of the scalar field is shifted and these shifts are very different at different propagation energies. At the Planckian energies we obtain the direction dependent kappa-modified dispersion relations. Thus our kappa-effective model for the massive scalar field shows a birefringence effect.Comment: 23 pages, 2 figures; To be published in JHEP. Minor typos corrected. Shorter version of the paper arXiv:1107.236

    Two-loop Renormalization for Nonanticommutative N=1/2 Supersymmetric WZ Model

    Full text link
    We study systematically, through two loops, the divergence structure of the supersymmetric WZ model defined on the N=1/2 nonanticommutative superspace. By introducing a spurion field to represent the supersymmetry breaking term F^3 we are able to perform our calculations using conventional supergraph techniques. Divergent terms proportional to F, F^2 and F^3 are produced (the first two are to be expected on general grounds) but no higher-point divergences are found. By adding ab initio F and F^2 terms to the original lagrangian we render the model renormalizable. We determine the renormalization constants and beta functions through two loops, thus making it possible to study the renormalization group flow of the nonanticommutation parameter.Comment: 36 pages, 25 figures, Latex fil

    Invertible Dirac operators and handle attachments on manifolds with boundary

    Full text link
    For spin manifolds with boundary we consider Riemannian metrics which are product near the boundary and are such that the corresponding Dirac operator is invertible when half-infinite cylinders are attached at the boundary. The main result of this paper is that these properties of a metric can be preserved when the metric is extended over a handle of codimension at least two attached at the boundary. Applications of this result include the construction of non-isotopic metrics with invertible Dirac operator, and a concordance existence and classification theorem.Comment: Accepted for publication in Journal of Topology and Analysi

    Impossibility of spontaneously breaking local symmetries and the sign problem

    Full text link
    Elitzur's theorem stating the impossibility of spontaneous breaking of local symmetries in a gauge theory is reexamined. The existing proofs of this theorem rely on gauge invariance as well as positivity of the weight in the Euclidean partition function. We examine the validity of Elitzur's theorem in gauge theories for which the Euclidean measure of the partition function is not positive definite. We find that Elitzur's theorem does not follow from gauge invariance alone. We formulate a general criterion under which spontaneous breaking of local symmetries in a gauge theory is excluded. Finally we illustrate the results in an exactly solvable two dimensional abelian gauge theory.Comment: Latex 6 page

    Doubly Special Relativity and de Sitter space

    Full text link
    In this paper we recall the construction of Doubly Special Relativity (DSR) as a theory with energy-momentum space being the four dimensional de Sitter space. Then the bases of the DSR theory can be understood as different coordinate systems on this space. We investigate the emerging geometrical picture of Doubly Special Relativity by presenting the basis independent features of DSR that include the non-commutative structure of space-time and the phase space algebra. Next we investigate the relation between our geometric formulation and the one based on quantum κ\kappa-deformations of the Poincar\'e algebra. Finally we re-derive the five-dimensional differential calculus using the geometric method, and use it to write down the deformed Klein-Gordon equation and to analyze its plane wave solutions.Comment: 26 pages, one formula (67) corrected; some remarks adde

    Correlations Between Clinical Trial Outcomes Based on Symptoms, Functional Impairments, and Quality of Life in Children and Adolescents With ADHD

    Get PDF
    OBJECTIVE: To assess relationships between treatment-associated changes in measures of ADHD symptoms, functional impairments, and health-related quality of life in children and adolescents with ADHD. METHOD: Pearson correlation coefficients were calculated post hoc for changes from baseline to endpoint in outcomes of one randomized, placebo- and active-controlled trial of lisdexamfetamine (osmotic-release methylphenidate reference) and one of guanfacine extended-release (atomoxetine reference). RESULTS: Changes in ADHD Rating Scale IV (ADHD-RS-IV) total score generally correlated moderately with changes in Child Health and Illness Profile-Child Edition: Parent Report Form (CHIP-CE:PRF) Achievement and Risk Avoidance ( r ≈ .4), but weakly with Resilience, Satisfaction, and Comfort ( r ≈ .2); and moderately with Weiss Functional Impairment Rating Scale-Parent (WFIRS-P) total score ( r ≈ .5). CHIP-CE: PRF Achievement and Risk Avoidance correlated moderately to strongly with WFIRS-P total score ( r ≈ .6). CONCLUSION: The ADHD-RS-IV, CHIP-CE:PRF, and WFIRS-P capture distinct but interconnected aspects of treatment response in individuals with ADHD

    Newtonian Gravity and the Bargmann Algebra

    Get PDF
    We show how the Newton-Cartan formulation of Newtonian gravity can be obtained from gauging the Bargmann algebra, i.e., the centrally extended Galilean algebra. In this gauging procedure several curvature constraints are imposed. These convert the spatial (time) translational symmetries of the algebra into spatial (time) general coordinate transformations, and make the spin connection gauge fields dependent. In addition we require two independent Vielbein postulates for the temporal and spatial directions. In the final step we impose an additional curvature constraint to establish the connection with (on-shell) Newton-Cartan theory. We discuss a few extensions of our work that are relevant in the context of the AdS-CFT correspondence.Comment: Latex, 20 pages, typos corrected, published versio

    Ponzano-Regge model revisited III: Feynman diagrams and Effective field theory

    Full text link
    We study the no gravity limit G_{N}-> 0 of the Ponzano-Regge amplitudes with massive particles and show that we recover in this limit Feynman graph amplitudes (with Hadamard propagator) expressed as an abelian spin foam model. We show how the G_{N} expansion of the Ponzano-Regge amplitudes can be resummed. This leads to the conclusion that the dynamics of quantum particles coupled to quantum 3d gravity can be expressed in terms of an effective new non commutative field theory which respects the principles of doubly special relativity. We discuss the construction of Lorentzian spin foam models including Feynman propagatorsComment: 46 pages, the wrong file was first submitte
    corecore