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Abstract

We show how the Newton–Cartan formulation of Newtonian gravity can be

obtained from gauging the Bargmann algebra, i.e. the centrally extended

Galilean algebra. In this gauging procedure several curvature constraints are

imposed. These convert the spatial (time) translational symmetries of the

algebra into spatial (time) general coordinate transformations andmake the spin

connection gauge fields dependent. In addition we require two independent

vielbein postulates for the temporal and spatial directions. In the final step we

impose an additional curvature constraint to establish the connection with the

(on-shell) Newton–Cartan theory. We discuss a few extensions of our work

that are relevant in the context of the AdS–CFT correspondence.

PACS number: 04.20.−q

1. Introduction

It is well known that Einstein’s formulation of gravity can be obtained by performing a formal

gauging procedure of the Poincaré algebra. In this procedure one associates a gauge field with

each generator of the Poincaré algebra. Next, one imposes constraints on the curvature tensors

of these gauge fields such that the translational symmetries of the algebra get converted

into general coordinate transformations. At the same time the gauge field of the Lorentz

transformations gets expressed into (derivatives of) the Vierbein gauge field which is the

only independent gauge field. One thus obtains an off-shell formulation of Einstein gravity.

On-shell Einstein gravity is obtained by imposing the usual Einstein equations of motion.

One may consider the non-relativistic version of the Poincaré algebra and Einstein gravity

independently. It turns out that the relevant non-relativistic version of the Poincaré algebra is a

particular contraction of the Poincaré algebra trivially extendedwith a one-dimensional algebra

that commutes with all the generators. This contraction yields the so-called Bargmann algebra,

which is the centrally extended Galilean algebra. On the other hand, taking the non-relativistic

0264-9381/11/105011+12$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA 1



Class. Quantum Grav. 28 (2011) 105011 R Andringa et al

limit of general relativity leads to the well-known non-relativistic Newtonian gravity in flat

space. The Newton–Cartan theory is a geometric reformulation of this Newtonian theory,

mimicking as much as possible the geometric formulation of general relativity [1, 2]. A

notable difference with the relativistic case is the occurrence of a degenerate metric.

The question we pose in this note is: can we derive the Newton–Cartan formulation of

Newtonian gravity directly from gauging the Bargmann algebra in the same way that Einstein

gravity may be derived from gauging the relativistic Poincaré algebra as described above?3

The answer will be yes, but there are some subtleties involved. This is partly due to the fact that

the standard procedure leads to spin-connection fields that depend not only on the temporal

and spatial vielbeins but also on the gauge field corresponding to the central charge generator.

These connections have to be fixed appropriately, via further curvature constraints, in order

to obtain the correct non-relativistic Poisson equation as well as the geodesic equation for a

massive particle.

The outline of this paper is as follows. In section 2 we first review how Einstein gravity

may be obtained by gauging the Poincaré algebra. To keep the discussion in this section as

general as possible we leave the dimension D of spacetime arbitrary. Next, we briefly review

in section 3 the Newton–Cartan formulation of Newtonian gravity, since this is the theory we

wish to end up with in the non-relativistic case. We next proceed, in section 4, with gauging

the Bargmann algebra. In a first step we introduce a set of curvature constraints that convert

the spatial (time) translational symmetries of the algebra into spatial (time) general coordinate

transformations. We next impose a vielbein postulate for the vielbeins in the temporal and

spatial directions. In a final step we impose further curvature constraints on the theory in

order to recover the non-relativistic Poisson equation and the geodesic equation for a massive

particle. Finally, our conclusions and suggestions for further work are presented in section 5.

2. Einstein gravity and gauging the Poincaré algebra

In this section we briefly review how the basic ingredients of Einstein gravity may be obtained

by applying a formal gauging procedure to the Poincaré algebra. We leave the dimension D

of spacetime in this section arbitrary.

Our starting point is the D-dimensional Poincaré algebra iso(D − 1, 1) with generators

Pa,Mab (a = 0, 1, . . . , D − 1):

[Pa, Pb] = 0,

[Mbc, Pa] = −2ηa[bPc],

[Mcd ,Mef ] = 4η[c[eMf ]d]. (2.1)

Associating a gauge field eµ
a with the local P-transformations with spacetime-dependent

parameters ζ a(x), and a gauge field ωµ
ab with the local Lorentz transformations with

spacetime-dependent parameters λab(x), we obtain the following transformation rules:

δeµ
a = ∂µζ a − ωµ

abζ b + λabeµ
b,

δωµ
ab = ∂µλab + 2λc[aωµ

b]c. (2.2)

In order to make contact with gravity we wish to replace the local P-transformations of all

gauge fields by general coordinate transformations and to interpret eµ
a as the vielbein, with

the inverse vielbein field ea
µ defined by

eµ
a eb

µ = δb
a , eµ

a ea
ν = δµ

ν . (2.3)

3 The gauging of the Bargmann algebra, from a somewhat different point of view, has been considered before in

[3, 4].
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To show how this can be achieved by imposing curvature constraints, we first consider the

following general identity for a gauge algebra:

0 = δgct (ξ
λ)Bµ

A + ξλRµλ
A −

∑

{C}

δ
(

ξλBλ
C
)

Bµ
A. (2.4)

The index A labels the gauge fields and corresponding curvatures of the gauge algebra. If we

now set A = a for the P-transformations and write the parameter ξλ as ξλ = ea
λζ a we can

bring the contribution of eµ
a in the sum in (2.4) to the left-hand side of the equation to obtain

δP (ζ b)eµ
a = δgct (ξ

λ)eµ
a + ξλRµλ

a(P ) − δM(ξλωλ
ab)eµ

a. (2.5)

We see that the difference between a P-transformation and a general coordinate transformation

is a curvature term and a Lorentz transformation. More generally, we deduce from identity

(2.4) that, whenever a gauge field transforms under a P-transformation, the P-transformations

of this gauge field can be replaced by a general coordinate transformation plus other symmetries

of the algebra by putting the curvature of the gauge field to zero. Since the vielbein is the only

field that transforms under the P-transformations, see (2.2), we are led to impose the following

constraint:

Rµν
a(P ) = 0. (2.6)

The same constraint allows us to solve for the Lorentz gauge field ωµ
ab in terms of (derivatives

of) the vielbein and its inverse:

ωµ
ab(e, ∂e) = −2eλ[a∂[µeλ]

b] + eµ
ceaλebρ∂[λeρ]

c. (2.7)

What remains is a theory with the vielbein eµ
a as the only independent field transforming

under local Lorentz transformations and general coordinate transformations and with ωµ
ab as

the dependent spin connection field.

A 0-connection may be introduced by imposing the vielbein postulate:

∇µeν
a ≡ ∂µeν

a − 0ρ
νµeρ

a − ωµ
abeν

b = 0. (2.8)

The anti-symmetric part of this equation, together with the curvature constraint (2.6), shows

that the anti-symmetric part of the 0-connection is zero, i.e. there is no torsion. From the

vielbein postulate (2.8) one may solve the 0-connection in terms of the vielbein and its inverse

as follows:

0ρ
νµ = eρ

aDµeν
a. (2.9)

Here Dµ is the Lorentz-covariant derivative. Finally, a non-degenerate metric and its inverse

can be defined as

gµν = eµ
aeν

bηab, gµν = ea
µeb

νηab. (2.10)

This concludes our description of the basic ingredients of off-shell Einstein gravity and

the Poincaré algebra. These basic ingredients are an independent non-degenerate metric gµν

and a dependent 0-connection 0ρ
νµ or, in the presence of flat indices, an independent vielbein

field eµ
a and a dependent spin-connection field ωµ

ab. The theory can be put on-shell by

imposing the Einstein equations of motion.

3. Newton–Cartan gravity

From now on we restrict the discussion toD = 4, i.e. one time and three space directions. We

wish to review Newton–Cartan gravity as a geometric rewriting of Newtonian gravity [1, 2].
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This geometric reformulation is motivated by the following observation. First, consider the

classical equations of motion of a massive particle,

ẍi(t) +
∂φ(x)

∂xi
= 0 , (3.1)

where xi(t) (i = 1, 2, 3) are the spatial coordinates, t is the absolute time coordinate and a

dot indicates differentiation with respect to t. Furthermore, φ(xk) is the Newtonian potential

which satisfies the Poisson equation

∂i∂
iφ = 4πGρ , (3.2)

where ρ is the mass density. The equations of motion (3.1) and (3.2) transform covariantly

under the Galilei group

x0 → x0 + ξ 0, xi → Ai
jx

j + vi t + d i, (3.3)

where Ai
j is a constant group element of SO(3) and {vi, d i} are three-vectors. In addition,

these equations are invariant under

xi → xi + ai(t), φ(x) → φ(x) − äj (t)xj , (3.4)

where ai(t) is an arbitrary time-dependent shift vector which can give rise to an acceleration.

From the Newtonian point of view equation (3.1) describes a curved trajectory in a flat

three-dimensional space. We now wish to re-interpret the same equations as a geodesic in a

curved four-dimensional spacetime. Indeed, one may rewrite equation (3.1) as the geodesic

equations of motion

d2xµ

dt2
+ 0µ

νρ

dxν

dt

dxρ

dt
= 0, (3.5)

provided that one chooses coordinates {xµ} = {x0, xi} = (t, xi) and takes the following

expression for the non-zero connection fields:

0i
00 = δij∂jφ, (3.6)

where we have used the Euclidean three-metric. At this point 0µ
νρ is a symmetric connection

independent of the metric. The coordinate choice x0 = t corresponds to choosing the so-called

adapted coordinates. The corresponding D-dimensional spacetime is called the Newton–

Cartan spacetime M. The only non-zero component of the Riemann tensor corresponding to

connection (3.6) is

Ri
0j0 = δik∂k∂jφ. (3.7)

If one now imposes the equations of motion R00 = 4πGρ one obtains the Poisson

equation (3.2). To write the Poisson equation in a covariant way we first must introduce

a metric.

As it stands, the 0-connection defined by (3.6) cannot follow from a non-degenerate

four-dimensional metric. One way to see this is to consider the Riemann tensor that is defined

by this 0-connection. The Riemann tensor, defined in terms of a metric connection based

upon a non-degenerate metric, satisfies certain symmetry properties. One may easily verify

that these properties are not satisfied by the Riemann tensor (3.7). Another way to see that

a degenerate metric is unavoidable is to consider the relativistic Minkowski metric and its

inverse

ηµν/c
2 =

(

−1 0

0 113/c
2

)

, ηµν =

(

−1/c2 0

0 113

)

. (3.8)

Taking the limit c → ∞ naturally leads to a degenerate covariant temporal metric τµν

with three zero eigenvalues and a degenerate contravariant spatial metric hµν with one zero
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eigenvalue. We conclude that the Galilei group keeps invariant twometrics τµν and hµν which

are degenerate, i.e. hµντνρ = 0. Since τµν is effectively a 1× 1 matrix we will use below its

vielbein version which is defined by a covariant vector τµ defined by τµν = τµτν .

A degenerate spatial metric hµν of rank 3 and a degenerate temporal vielbein τµ of rank 1,

together with a symmetric connection 0ρ
µν on M, that depends on these two degenerate

metrics, can be introduced as follows [5]. First of all the degeneracy implies that

hµντν = 0. (3.9)

We next impose the metric compatibility:

∇ρh
µν = 0, ∇ρτµ = 0. (3.10)

The covariant derivative∇ is with respect to a connection 0ρ
µν . The second of these conditions

indicates that

τµ = ∂µf (xν) (3.11)

for a scalar function f (xν). In Newton–Cartan theory this scalar function is chosen to be the

absolute time t which foliates M:

f (xν) ≡ t. (3.12)

In general relativity metric compatibility allows one to write down the connection in terms of

the metric and its derivatives in a unique way, see (2.9). In this analysis, the connection 0ρ
µν is

not uniquely determined by the metric compatibility conditions (3.10). This can be seen from

the fact that these conditions are preserved by the shift

0ρ
µν → 0ρ

µν + hρλKλ(µτν) (3.13)

for an arbitrary two-form Kµν [6]. Using this arbitrary two-form it is possible to write down

the most general connection which is compatible with (3.10). In order to do this, one needs

to introduce new tensors, the spatial inverse metric hµν and the temporal inverse vielbein τµ

which are defined by the following properties:

hµνhνρ = δµ
ρ − τµτρ, τµτµ = 1,

hµντν = 0, hµντ
ν = 0. (3.14)

Note that from these conditions it follows that

∇ρhµν = −2τ(µhν)σ∇ρτ
σ (3.15)

which is not zero in general. The most general connection compatible with (3.10) is then [6]

0σ
µν = τ σ ∂(µτν) +

1
2
hσρ(∂νhρµ + ∂µhρν − ∂ρhµν) + hσλKλ(µτν). (3.16)

We note that the original independent connection (3.6) is quite different from the metric

connection defined in (3.16). Nevertheless, given extra conditions discussed below, the

Newton–Cartan theory with the metric connection (3.16) reproduces Newtonian gravity. To

see how this goes, it is convenient to use adapted coordinates x0 = t . Conditions (3.11) and

(3.14) then imply

τµ = δ0µ, τµ = (1, τ i),

hµ0 = 0, hµ0 = −hµiτ
i . (3.17)

These conditions are preserved by the coordinate transformations

x0 → x0 + ξ 0,

xi → xi + ξ i(xµ), (3.18)

5
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where ξ 0 is a constant. The finite spatial transformation generated by ξ i(xµ) is invertible. In

adapted coordinates the connection coefficients (3.16) are given by [6]

0i
00 = hij

(

∂0hj0 − 1
2
∂jh00 +Kj0

)

≡ hij8j ,

0i
0j = hik

(

1
2
∂0hjk + ∂[jhk]0 − 1

2
Kjk

)

≡ hik
(

1
2
∂0hjk + ωjk

)

,

0i
jk = { i

jk}, 00µν = 0, (3.19)

where { i
jk} are the usual Christoffel symbols with respect to the metric hij with inverse hij.

We now replace the original equations of motion R00 = 4πGρ by the covariant ansatz

Rµν = 4πGρ τµτν (3.20)

and verify that this leads to Newtonian gravity. In adapted coordinates these equations imply

that

Rij = Ri0 = 0. (3.21)

The condition Rij = 0 implies that the spatial hypersurfaces are flat, i.e. one can choose a

coordinate frame with 0i
jk = 0 such that the spatial metric is given by

hij = δij , hij = δij . (3.22)

This implies

0i
0j = hikωjk ↔ ωij = hk[j0

k
i]0,

0i
00 = hij8j ↔ 8i = hij0

j

00. (3.23)

The choice of a flat metric further reduces the allowed coordinate transformations (3.18) to

x0 → x0 + ξ 0, xi → Ai
j (t)x

j + ai(t), (3.24)

where Ai
j (t) is an element of SO(3).

To derive the Poisson equation from the ansatz (3.20) two additional conditions must be

invoked. The first is the Trautman condition [7]:

hσ [λR
µ]
(νρ)σ (0) = 0. (3.25)

In adapted coordinates it implies

∂0ωmi − ∂[m8i] = 0, ∂[kωmi] = 0. (3.26)

Although 8i and ωij are not tensors, both equations of (3.26) are separately covariant

under (3.24) which can be checked explicitly. Using definitions (3.23) of 8i and ωij one

may verify that conditions (3.26) are equivalent to the manifestly tensorial equation

∂[ρKµν] = 0 → Kµν = 2∂[µmν] , (3.27)

where mµ is a vector field determined up to the derivative of some scalar field.

The second condition we need is that ωij , see (3.19), depends only on time, not on space

coordinates [5, 6]. In [5] three possible conditions on the Riemann tensor are discussed that

lead to the desired restriction on ωij :

hρλRµ
νρσ (0)Rν

µλα(0) = 0 or τ[λR
µ

ν]ρσ (0) = 0 or hσ [λRµ]
νρσ (0) = 0. (3.28)

These are the so-called Ehlers conditions. Each condition separately leads to the condition

∂kωij = 0 in adapted coordinates and thus ωij = ωij (t). One can next set ω′
ij ≡ 0,

or equivalently 0′i
0j ≡ 0, see (3.23), by a time-dependent rotation x ′i = Ai

j (t)x
j [6].

Conditions (3.26) imply that in the new coordinate system ∂ ′
[i8

′
j ] = 0 and hence that8′

i = ∂ ′
i8

for some scalar field 8. This implies that

0′i
00 = δij∂ ′

j8 (3.29)

6
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in this coordinate system. Equations (3.20) thus lead to the Poisson equation

R00 = ∂i0
i
00 = δij∂i∂jφ = 4πGρ. (3.30)

Finally, we should also recover the geodesic equation (3.5). Using adapted coordinates

and performing the above time-dependent rotation indeed give the desired equations:

ẍ ′0(t) = 0, ẍ ′i(t) + ∂ ′i8 = 0. (3.31)

This completes the proof that Newton–Cartan gravity, formulated in terms of two degenerate

metrics (see (3.9)) and supplied with the Trautman condition (3.25) and the Ehlers conditions

(3.28), precisely leads to the equations of Newtonian gravity. In the next section we will show

how the same Newton–Cartan theory, including the Trautman and Ehlers conditions, follows

from gauging the so-called Bargmann algebra.

4. Gauging the Bargmann algebra

4.1. The Bargmann algebra

The Bargmann algebra is the Galilean algebra augmented with a central generator4 M and can

be obtained as follows. We first extend the Poincaré algebra iso(D − 1, 1) to the direct sum

of the Poincaré algebra and a commutative subalgebra gM spanned by M:

iso(D − 1, 1) → iso(D − 1, 1) ⊕ gM . (4.1)

We next perform the following contraction of this algebra:

P0 →
1

ω2
M +H, Pi →

1

ω
Pi, Ji0 →

1

ω
Gi, ω → 0. (4.2)

The contraction of P0 is motivated by considering the non-relativistic approximation of P0 for

a massive free particle

P0 = +
√

c2PiP i +M2c4 ≈ Mc2 +
PiP

i

2M
, (4.3)

where c = ω−1 is the speed of light. The contracted algebra is the so-called Bargmann algebra

b(D − 1, 1) which has the following non-zero commutation relations:

[Jij , Jkl] = 4δ[i[kJl]j ], [Jij , Pk] = −2δk[iPj ],

[Jij ,Gk] = −2δk[iGj ], [Gi,H ] = −Pi,

[Gi, Pj ] = −δijM. (4.4)

ForM = 0, this is the Galilean algebra.

TheM generator is needed to obtain massive representations of the Galilean algebra. This

can be understood by considering the action for a non-relativistic free particle with mass M:5

S =
1

2

∫ t2

t1

Mẋi ẋidt. (4.5)

This action is invariant under the Galilei transformations (3.3), but the Lagrangian L is not; it

transforms as a total derivative under an infinitesimal Galilei boost δxi = vi t :

δL =
d

dt
(Mxivi). (4.6)

4 In D = 3 dimensions, three such central generators can be introduced [8, 9].
5 We thank J Gomis for showing this argument to us.
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Due to this the naive Noether chargeQnaive = piδxi = Mẋivi t gets modified by an additional

boundary term such that the correct Noether charge corresponding to boosts becomes

QG = Mẋivi t − Mxivi . (4.7)

Using this expression one may verify that the Poisson bracket of the Noether charge QG

corresponding to infinitesimal boosts δxi = vi t with the Noether charge QP corresponding to

infinitesimal translations δxi = ai indeed gives the central generator M:

{QG,QP }PB = −Mvkak, (4.8)

in line with the [Gi, Pj ] commutator given in (4.4).

4.2. Gauging the Bargmann algebra

We now gauge the Bargmann algebra (4.4) following the same procedure we applied to the

Poincaré algebra (2.1) in section 2.

Compared to the Poincaré case the gauge fields and parameters corresponding to the

Bargmann algebra split up into a spatial and temporal part:

eµ
a → {eµ

0, eµ
i}, ωµ

ab → {ωµ
ij , ωµ

i0}

ζ a → {ζ 0, ζ i}, λab → {λi0, λij }. (4.9)

The gauge field corresponding to the generatorMwill be calledmµ and its gauge parameterwill

be called σ . We label eµ
0 = τµ and ζ 0 = τ . The variations of the gauge fields corresponding

to the different generators are given by

H : δτµ = ∂µτ,

P : δeµ
i = Dµζ i + λijeµ

j + λi0τµ − τωµ
i0,

G : δωµ
i0 = Dµλi0 + λijωµ

j0,

J : δωµ
ij = Dµλij ,

M : δmµ = ∂µσ − ζ iωµ
i0 + λi0eµ

i . (4.10)

The derivativeDµ is covariant with respect to the J-transformations and as such only contains

the ωµ
ij gauge field. The curvatures of the gauge fields read

Rµν(H) = 2∂[µτν], (4.11)

Rµν
i(P ) = 2

(

D[µeν]
i − ω[µ

i0τν]

)

, (4.12)

Rµν
ij (J ) = 2

(

∂[µων]
ij − ω[µ

kiων]
jk

)

, (4.13)

Rµν
i0(G) = 2D[µων]

i0, (4.14)

Rµν(M) = 2
(

∂[µmν] + e[µ
jων]

j0
)

. (4.15)

Using the general formula (2.4) we convert the P and H transformations into general

coordinate transformations in space and time. Wewrite the parameter of the general coordinate

transformations ξλ in (2.4) as

ξλ = eλ
iζ

i + τ λτ. (4.16)

Here we have used the inverse spatial vielbein eλ
i and the inverse temporal vielbein τ λ defined

by

eµ
ieµ

j = δi
j , τµτµ = 1, (4.17)

8



Class. Quantum Grav. 28 (2011) 105011 R Andringa et al

τµeµ
i = 0, τµeµ

i = 0 , (4.18)

eµ
ieν

i = δν
µ − τµτ ν . (4.19)

These conditions are the vielbein version of conditions (3.14).

We observe that only the gauge fields eµ
i , τµ and mµ transform under the P and

H transformations. These are the fields that should remain independent, while the spin

connections should become dependent fields. This can be achieved with the following

constraints:

Rµν
i(P ) = Rµν(H) = Rµν(M) = 0. (4.20)

The Bianchi identities then lead to additional relations between curvatures:

R[λµ
ij (J )eν]

j = −R[λµ
i0(G)τν], e[λ

iRµν]
i0(G) = 0. (4.21)

The constraint Rµν(H) = 0 gives the condition ∂[µτν] = 0 and hence we may take τµ

as in (3.11). The other two constraints, Rµν
i(P ) = Rµν(M) = 0, enable us to solve for the

spin connection gauge fields ωµ
ij , ωµ

i0 in terms of the other gauge fields, so that indeed only

eµ
i , τµ and mµ remain as independent fields.

To solve for ωµ
ij , we write

Rµν
i(P )eρ

i + Rρµ
i(P )eν

i − Rνρ
i(P )eµ

i = 0. (4.22)

From this it follows that

ωµ
kl = ∂[µeν]

keνl − ∂[µeν]
leνk + eµ

i∂[νeρ]
ieνkeρl − τµeρ[kωρ

l]0. (4.23)

Next we solve for ωµ
i0. We substitute (4.23) into Rµν

i(P ) = 0 and contract this with eµ
j and

τ ν . This gives the condition

eµ (iωµ
j)0 = 2 eµ (i∂[µeν]

j)τ ν . (4.24)

Furthermore, Rµν(M) = 0 can be contracted with eµ
i and τµ to give the following conditions:

eµ[iωµ
j ]0 = eµieνj∂[µmν], τµωµ

i0 = 2τµeνi∂[µmν]. (4.25)

Using constraints (4.24) and (4.25) one arrives at the following solution for ωµ
i0:

ωµ
i0 = eνi∂[µmν] + eνiτ ρeµ

j∂[νeρ]
j + τµτ νeρi∂[νmρ] + τ ν∂[µeν]

i . (4.26)

At this point we are left with the independent fields eµ
i , τµ and mµ. Furthermore, the theory

is still off-shell; no equations of motion have been imposed.

4.3. Newton–Cartan gravity

To make contact with the formulation of Newton–Cartan gravity presented in section 3 we

need to introduce a 0-connection. In the gauge algebra approach this is most naturally done

by imposing a vielbein postulate for the spatial vielbein

∂µeν
i − ωµ

ijeν
j − ωµ

i0τν − 0ρ
νµeρ

i = 0 (4.27)

and a vielbein postulate for the temporal vielbein

∂µτν − 0λ
νµτλ = 0 , (4.28)

which is the second condition of (3.10). These vielbein postulates imply

0ρ
νµ = τ ρ∂(µτν) + eρ

i

(

∂(µeν)
i − ω(µ

ijeν)
j − ω(µ

i0τν)

)

. (4.29)

This connection is symmetric due to the curvature constraints Rµν
i(P ) = Rµν(H) = 0 and

satisfies (3.10). An important difference between the metric compatibility conditions given in
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(3.10) and in (4.27) and (4.28) is that the latter define the connection 0 uniquely. From (3.16)

and (4.29) we find that

Kµν = 2ω[µ
i0eν]

i , (4.30)

with ωµ
i0 given by (4.26). This implies via the R(M) = 0 constraint that

Kµν = 2∂[µmν] (4.31)

which solves condition (3.27). The Riemann tensor corresponding to (4.29) can now be

expressed in terms of the curvature tensors of the gauge algebra:

Rµ
νρσ (0) = ∂ρ0

µ
νσ − ∂σ0µ

νρ + 0λ
νσ0

µ
λρ − 0λ

νρ0
µ
λσ

= −eµ
i

(

Rρσ
i0(G)τν + Rρσ

ij (J )eν
j

)

. (4.32)

Here we have used (4.20). The Trautman condition (3.25), applied to (4.32), is equivalent to

the first constraint of (4.21).

We know from the analysis in section 3 that, in order to make contact with the Newton–

Cartan formulation, we must impose the Ehlers conditions (3.28). One can show that each of

the three Ehlers conditions (3.28) is equivalent to the single curvature constraint

Rµν
ij (J ) = 0. (4.33)

Substituting this result into (4.21) leads to the following constraints on Rµν
i0(G):

R[λµ
i0(G)τν] = 0, e[λ

iRµν]
i0(G) = 0. (4.34)

The contraction of (4.34) with eµ
i and τµ gives

eµ
ie

ν
jRµν

k0(G) = 0, τµeν[iRµν
j ]0(G) = 0. (4.35)

This implies that the only non-zero component of Rµν
i0(G) is

τµeν (iRµν
j)0(G) = δk(jR

i)
0k0(0) (4.36)

which is precisely the only non-zero component (3.7) of the Riemann tensor that occurs in the

Newton–Cartan formulation.

At this point we have made contact with the Newton–Cartan gravity theory presented in

section 3. We have the same0-connection and (degenerate) metrics. It can be shown that these

lead to the desired Poisson equation and geodesic equation of a massive free particle following

the same steps as in section 3. This concludes our discussion of the gauging procedure.

5. Conclusions

In this work we have shown how, just like Einstein gravity, the Newton–Cartan formulation

of Newtonian gravity can be obtained by a gauging procedure. The Lie algebra underlying

this procedure is the Bargmann algebra given in (4.4). To obtain the correct Newton–Cartan

formulation we need to impose constraints on the curvatures. In a first step we impose

the curvature constraints (4.20). They enable us to convert the spatial (time) translational

symmetries of the Bargmann algebra into spatial (time) general coordinate transformations.

At the same time they enable us to solve for the spin-connection gauge fields ωµ
i0 and ωµ

ij in

terms of the remaining gauge fields eµ
i , τµ and mµ, see equations (4.23) and (4.26). For this

to work, it is essential that we work with a non-zero central element M in the algebra. So far,

we work off-shell without comparing equations of motion.

In a second step we impose the vielbein postulates (4.27) and (4.28). These enable us to

solve for the 0 connection thereby solving the Trautman condition (3.25) automatically. In

order to obtain the correct Poisson equation and geodesic equation of a massive free particle

10
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we impose in a third step the additional curvature constraints (4.33) which are equivalent to

each of the three Ehlers conditions (3.28). The Poisson equation and the geodesic equation for

a massive particle are obtained from relation (4.36) between the curvature of the dependent

field ωµ
i0 and the Newton–Cartan Riemann tensor in the form (3.7). The independent gauge

fields eµ
i and τµ describe the degenerate metrics of Newton–Cartan gravity.

This work can be extended in several directions. First of all, it would be interesting to see

whether a supersymmetric version of the Bargmann algebra leads to the Newtonian version of a

Poincaré supergravity model. Second, one could try to apply the gauging procedure developed

in this paper to other algebras which have appeared in recent non-relativistic applications of

the AdS–CFT correspondence. Examples of such algebras are the Galilean conformal algebra,

the Schrödinger algebra and the Lifshitz algebra. The gauging of the first algebra is expected

to lead to a Newtonian version of conformal gravity. Irrespective of its role in the AdS/CFT

correspondence it would be interesting to see whether this could lead to a non-relativistic

version of the conformal tensor calculus.

One of the original motivations of this work was the possible role of Newton–Cartan

gravity in non-relativistic applications of the AdS–CFT correspondence. In most applications

the relativistic symmetries of the AdS bulk theory are broken by the vacuum solution one

considers6. This is the case if one considers the Schrödinger or Lifshitz algebras. The

situation changes if one considers the Galilean conformal algebra instead. It has been argued

that in that case the bulk gravity theory is given by an extension of the Newton–Cartan theory

where the spacetime metric is degenerate with two zero eigenvalues corresponding to the time

and the radial directions [10]. This leads to a foliation where the time direction is replaced by

a two-dimensional AdS2 space. This requires a contraction of the Poincaré algebra in which

the Bargmann algebra is replaced by a centrally extended string Galilean algebra or, if one

includes the cosmological constant, by a string Newton–Hooke algebra [11, 12]7. We expect

that the systematic gauging procedure developed in this work will be essential to work out the

non-relativistic theories corresponding to these new cases.
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