17 research outputs found

    Photothermal convection of a magnetic nanofluid in a direct absorption solar collector

    Get PDF
    Nanofluid-based direct absorption of solar heat results in thermal efficiencies superior to conventional solar thermal technology. In addition, convection of nanofluid can be sustained pump-free in the collector. In this article, we study an aqueous magnetic nanofluid capable to establish the photothermal convection in a lab-scale direct absorption solar collector equipped with a solenoid. The nanofluid consisted of 60-nm Fe2O3 particles dispersed in distilled water at concentration in the range 0.5% wt.-2.0% wt. An empirical model of the photothermal convection was developed based on the experiments. The model accounted for magnetic and thermophoretic forces acting within the nanofluid. The nanofluid with up to 2.0% wt. iron oxide nanoparticles obtained the velocity of ∼5 mm/s under the magnetic field of up to 28 mT. This resulted in the maximum thermal efficiency of the collector equal to 65%.publishedVersio

    Photothermal conversion of biodegradable fluids and carbon black nanofluids

    Get PDF
    The paper is devoted to the topic of direct absorption solar collectors (DASCs). Various kinds of fluids can be used as heat transfer fluid in DASCs, and the main focus of our paper is on comparing nanofluids (water with carbon black nanoparticles, concentrations between 0.25 and 1.00% weight) and biodegradable coffee colloids. At first, these fluids were tested by exposing them to irradiation caused by artificial light in indoor experiments, and the corresponding temperature increase was recorded. The fluids were placed in a beaker with a relatively large size so that most of the fluid was not directly irradiated. In these experiments, the performance of the two studied fluids was similar: the resulting temperature increase varied between 46 and 50 °C. Our next experiments involved a smaller system subjected to irradiation obtained by using a solar collector. As a result, we detected an intense absorption on the nanoparticle surface so that the temperature rise in the nanofluid was higher than in the coffee colloids. Next, the process was analysed using a theoretical analysis that gave good correspondence with the experiments. Finally, we extended the theoretical analysis to a DASC with a flowing fluid. The model was validated against results from the literature, but it also supported our experimental findings.publishedVersio

    Theoretical analysis of erosion in elbows due to flows with nano- and micro-size particles

    Get PDF
    The present paper focuses on the issue of erosion due to fluid flow laden with nano- and microparticles. We investigated the case of a pipe elbow using theoretical analysis and numerical simulations. For the case when the particles were large, that is, of micrometre size, we observed the expected behaviour in which the erosion rate was greater with increasing particle diameter. The same was seen for flow velocity, and higher velocities promoted the erosion process. For small particles, however, the erosion rate increased with decreasing particle size. This was explained by the formation of secondary flows in the elbow that centrifuged the particles towards the walls. For very small particles, the erosion rate decreased again, i.e. the particle distribution towards the wall was insufficient to erode the pipe wall due to the particles low mass.publishedVersio

    Direct absorption solar collector: Use of nanofluids and biodegradable colloids

    Get PDF
    In this paper, an experimental and numerical analysis was performed on both carbon black nanofluids and a biodegradable fluid in a novel pump-free direct absorption solar collector (DASC). In the experiments, the nanofluid consisted of carbon black nanoparticles in water with concentrations ranging from 0.005 to 0.020 wt%, while the biodegradable fluid was coffee colloid. The overall findings indicated a concurrence: the nanofluids exhibited the best thermal performance when compared to pure water. The optimum nanoparticle concentration of 0.010 wt% carbon black yielded a 102% thermal enhancement compared to the base fluid. Furthermore, a numerical analysis using computational fluid dynamics (CFD) software was performed to study the experimental rig. According to these simulations, the optimal nanofluid concentration showed a 76.6 - 90.9% increase compared to the base fluid. The biodegradable fluids did not show a significant enhancement in the experiments, which differs from what has been reported in the scientific literature. Nevertheless, from the computer simulations, the biodegradable fluids also slightly outperformed the case when the pure water was used.publishedVersio

    Experimental investigation of erosion due to nanofluids

    Get PDF
    The demand for efficient and sustainable energy is continuously increasing. Among the many technologies with great potential within this field are nanofluids. Nevertheless, there is still a considerable lack of information regarding their erosive effects on systems materials. In this research, the tribological behaviour of aqueous 1.33 wt% TiO2 nanofluid was investigated when jet-impinged with an average velocity of 0.8 m/s at flat targets of various materials (plastic, copper, rubber). The target surfaces were analysed using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and X-ray diffraction (XRD). It was found that impinging TiO2 nanofluid caused erosion of 282 g/( yr.mm2) for copper and 212 g/( yr.mm2) for plastic. In addition, a deposition of nanoparticles was found for rubber at rate of 2.7 kg/(yr.mm2).publishedVersio

    Intrauterine deaths — an unsolved problem in Polish perinatology

    Get PDF
    Objectives: The Polish criteria for “intrauterine death” include fetal demise after 22 weeks of gestation, weighing > 500 g and body length at least 25 cm, when the gestational age is unknown. The rate of fetal death in Poland in 2015 is 3:10,000. In 2020, 1,231 stillbirths were registered. Material and methods: An analysis using 142,662 births in the period between 2015–2020 in 11 living in Poland. The first subgroup was admitted as patients > 22 to the beginning of the 30th week of pregnancy (n = 229), and the second from the 30th week of pregnancy inclusively (n = 179). In the case of women from both subgroups, there was a risk of preterm delivery close to hospitalization. Results: It was found that stillbirth in 41% of women in the first pregnancy. For the patient, stillbirth was also the first in his life. The average stillbirth weight was 1487 g, the average body length was 40 cm. Among fetuses up to 30 weeks, male fetuses are born more often, in subgroup II, the sex of the child was usually female. Most fetal deaths occur in mothers < 15 and > 45 years of age. Conclusions: According to the Polish results of the origin of full-term fetuses > 30 weeks of gestation for death in the concomitant antenatal, such as placental-umbilical and fetal hypoxia, acute intrapartum effects rarely, and moreover < 30 Hbd fetal growth restriction (FGR), occurring placental-umbilical, acute intrapartum often

    Photothermal convection of a magnetic nanofluid in a direct absorption solar collector

    No full text
    Nanofluid-based direct absorption of solar heat results in thermal efficiencies superior to conventional solar thermal technology. In addition, convection of nanofluid can be sustained pump-free in the collector. In this article, we study an aqueous magnetic nanofluid capable to establish the photothermal convection in a lab-scale direct absorption solar collector equipped with a solenoid. The nanofluid consisted of 60-nm Fe2O3 particles dispersed in distilled water at concentration in the range 0.5% wt.-2.0% wt. An empirical model of the photothermal convection was developed based on the experiments. The model accounted for magnetic and thermophoretic forces acting within the nanofluid. The nanofluid with up to 2.0% wt. iron oxide nanoparticles obtained the velocity of ~5 mm/s under the magnetic field of up to 28 mT. This resulted in the maximum thermal efficiency of the collector equal to 65%

    Photothermal convection of a magnetic nanofluid in a direct absorption solar collector

    Get PDF
    Nanofluid-based direct absorption of solar heat results in thermal efficiencies superior to conventional solar thermal technology. In addition, convection of nanofluid can be sustained pump-free in the collector. In this article, we study an aqueous magnetic nanofluid capable to establish the photothermal convection in a lab-scale direct absorption solar collector equipped with a solenoid. The nanofluid consisted of 60-nm Fe2O3 particles dispersed in distilled water at concentration in the range 0.5% wt.-2.0% wt. An empirical model of the photothermal convection was developed based on the experiments. The model accounted for magnetic and thermophoretic forces acting within the nanofluid. The nanofluid with up to 2.0% wt. iron oxide nanoparticles obtained the velocity of ∼5 mm/s under the magnetic field of up to 28 mT. This resulted in the maximum thermal efficiency of the collector equal to 65%

    Use of biodegradable colloids and carbon black nanofluids for solar energy applications

    Get PDF
    The conversion of solar energy to heat can be performed in direct absorption solar collectors, where the radiation from the sun is absorbed by a fluid. There are various types of fluids that can be used, and recently, nanofluids (i.e., liquids with immersed nanoparticles) have been investigated by researchers. Nevertheless, nanofluids have inherent drawbacks such as cost, toxicity, and clogging. This paper considers the use of fluids that are inexpensive and neutral to the environment, namely, coffee colloids. These types of fluids have already been tested for solar energy applications, but they have not yet been compared with nanofluids. In this research, we conducted a series of simple experiments where both coffee colloids and carbon black nanofluids were analyzed under the same conditions. According to our results, the thermal efficiency of coffee colloid and the nanofluid systems is, respectively, 12% and 16% greater than that of pure water. In addition to the experiments, we developed a mathematical model that is based on the Beer–Lambert law and a heat balance equation. Despite its simplicity, the model predicts the results relatively well

    Extension of the hard-sphere model for particle-flow simulations

    No full text
    Discrete element methods require appropriate models for particle-particle collisions. Usually, researchers use soft-sphere types of models where the collision dynamics is solved numerically. This makes the simulation computationally expensive. In this paper, however, we show a hard-sphere model that uses ready analytic formulas that relate the pre- and postcollisional velocities of the particles in contact. This hard-sphere model is an extension of an existing model that uses three input parameters. For this, we applied the linear-spring soft-sphere model, where analytic relations can be found. These relations were implemented into the standard hard-sphere model. As a result, we obtain a robust hard-sphere model that is more accurate than the standard one and is still computationally cheap
    corecore