79 research outputs found

    Robustness and timing of cellular differentiation through population-based symmetry breaking

    Get PDF
    During mammalian development, cell types expressing mutually exclusive genetic markers are differentiated from a multilineage primed state. These observations have invoked single-cell multistability view as the dynamical basis of differentiation. However, the robust regulative nature of mammalian development is not captured therein. Considering the well-established role of cell-cell communication in this process, we propose a fundamentally different dynamical treatment in which cellular identities emerge and are maintained on population level, as a novel unique solution of the coupled system. Subcritical system’s organization here enables symmetry-breaking to be triggered by cell number increase in a timed, self-organized manner. Robust cell type proportions are thereby an inherent feature of the resulting inhomogeneous solution. This framework is generic, as exemplified for early embryogenesis and neurogenesis cases. Distinct from mechanisms that rely on pre-existing asymmetries, we thus demonstrate that robustness and accuracy necessarily emerge from the cooperative behaviour of growing cell populations during development

    Cells use molecular working memory to navigate inchanging chemoattractant fields

    Get PDF
    In order to migrate over large distances, cells within tissues and organisms rely on sensing local gradient cues which are irregular, conflicting, and changing over time and space. The mechanism how they generate persistent directional migration when signals are disrupted, while still remaining adaptive to signal's localization changes remain unknown. Here we find that single cells utilize a molecular mechanism akin to a working memory to satisfy these two opposing demands. We derive theoretically that this is characteristic for receptor networks maintained away from steady states. Time-resolved live-cell imaging of Epidermal growth factor receptor (EGFR) phosphorylation dynamics shows that cells transiently memorize position of encountered signals via slow-escaping remnant of the polarized signaling state, a dynamical 'ghost', driving memory-guided persistent directional migration. The metastability of this state further enables migrational adaptation when encountering new signals. We thus identify basic mechanism of real-time computations underlying cellular navigation in changing chemoattractant fields

    research article

    Get PDF
    During embryonic development and tissue homeostasis, reproducible proportions of differentiated cell types are specified from populations of multipotent precursor cells. Molecular mechanisms that enable both robust cell-type proportioning despite variable initial conditions in the precursor cells, and the re-establishment of these proportions upon perturbations in a developing tissue remain to be characterized. Here, we report that the differentiation of robust proportions of epiblast-like and primitive endoderm-like cells in mouse embryonic stem cell cultures emerges at the population level through cell-cell communication via a short-range fibroblast growth factor 4 (FGF4) signal. We characterize the molecular and dynamical properties of the communication mechanism and show how it controls both robust cell-type proportioning from a wide range of experimentally controlled initial conditions, as well as the autonomous re-establishment of these proportions following the isolation of one cell type. The generation and maintenance of reproducible proportions of discrete cell types is a new function for FGF signaling that might operate in a range of developing tissues

    A self-organized synthetic morphogenic liposome responds with shape changes to local light cues

    Get PDF
    Reconstituting artificial proto-cells capable of transducing extracellular signals into cytoskeletal changes can reveal fundamental principles of how non-equilibrium phenomena in cellular signal transduction affect morphogenesis. Here, we generated a Synthetic Morphogenic Membrane System (SynMMS) by encapsulating a dynamic microtubule (MT) aster and a light-inducible signaling system driven by GTP/ATP chemical potential into cell-sized liposomes. Responding to light cues in analogy to morphogens, this biomimetic design embodies basic principles of localized Rho-GTPase signal transduction that generate an intracellular MT-regulator signaling gradient. Light-induced signaling promotes membrane-deforming growth of MT-filaments by dynamically elevating the membrane-proximal tubulin concentration. The resulting membrane deformations enable recursive coupling of the MT-aster with the signaling system, which generates global self-organized morphologies that reorganize towards local external cues in dependence on prior shape. SynMMS thereby signifies a step towards bio-inspired engineering of self-organized cellular morphogenesis

    Analysing Dynamical Behavior of Cellular Networks via Stochastic Bifurcations

    Get PDF
    The dynamical structure of genetic networks determines the occurrence of various biological mechanisms, such as cellular differentiation. However, the question of how cellular diversity evolves in relation to the inherent stochasticity and intercellular communication remains still to be understood. Here, we define a concept of stochastic bifurcations suitable to investigate the dynamical structure of genetic networks, and show that under stochastic influence, the expression of given proteins of interest is defined via the probability distribution of the phase variable, representing one of the genes constituting the system. Moreover, we show that under changing stochastic conditions, the probabilities of expressing certain concentration values are different, leading to different functionality of the cells, and thus to differentiation of the cells in the various types

    Timing Cellular Decision Making Under Noise via Cell–Cell Communication

    Get PDF
    Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell–cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words, the summation performed by the cell population would average out the noise and reduce its detrimental impact

    The transition between stochastic and deterministic behavior in an excitable gene circuit

    Get PDF
    We explore the connection between a stochastic simulation model and an ordinary differential equations (ODEs) model of the dynamics of an excitable gene circuit that exhibits noise-induced oscillations. Near a bifurcation point in the ODE model, the stochastic simulation model yields behavior dramatically different from that predicted by the ODE model. We analyze how that behavior depends on the gene copy number and find very slow convergence to the large number limit near the bifurcation point. The implications for understanding the dynamics of gene circuits and other birth-death dynamical systems with small numbers of constituents are discussed.Comment: PLoS ONE: Research Article, published 11 Apr 201

    Speed-Dependent Cellular Decision Making in Nonequilibrium Genetic Circuits

    Get PDF
    Despite being governed by the principles of nonequilibrium transitions, gene expression dynamics underlying cell fate decision is poorly understood. In particular, the effect of signaling speed on cellular decision making is still unclear. Here we show that the decision between alternative cell fates, in a structurally symmetric circuit, can be biased depending on the speed at which the system is forced to go through the decision point. The circuit consists of two mutually inhibiting and self-activating genes, forced by two external signals with identical stationary values but different transient times. Under these conditions, slow passage through the decision point leads to a consistently biased decision due to the transient signaling asymmetry, whereas fast passage reduces and eventually eliminates the switch imbalance. The effect is robust to noise and shows that dynamic bifurcations, well known in nonequilibrium physics, are important for the control of genetic circuits
    corecore