42 research outputs found

    Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma : C<SUB>2</SUB>H<SUB>6</SUB>- to C<SUB>5</SUB>H<SUB>12</SUB>-containing mixtures

    No full text
    International audienceThe kinetics of ignition in CnH2n 2:O2:Ar mixtures for n = 2 to 5 has been studied experimentally and numerically after a high-voltage nanosecond discharge. The ignition delay time behind a reflected shock wave was measured with and without the discharge. It was shown that the initiation of the discharge with a specific deposited energy of 1030 mJ/cm3 leads to an order of magnitude decrease in the ignition delay time. Discharge processes and following chain chemical reactions with energy release were simulated. The generation of atoms, radicals and excited and charged particles was numerically simulated using the measured time-resolved discharge current and electric field in the discharge phase. The calculated densities of the active particles were used as input data to simulate plasma-assisted ignition. The sensitivity of the results to variation in electron cross sections, reaction rates and radical composition was investigated. Good agreement was obtained between the calculated ignition delay times and the experimental data. The analysis of the simulation results showed that the effect of nonequilibrium plasma on the ignition delay is associated with faster development of chain reactions, due to atoms and radicals produced by the electron impact dissociation of molecules in the discharge phase. Finally, we studied the role of various hydrocarbon radicals in the plasma-assisted ignition of the mixtures under consideration

    Ignition with Low-Temperature Plasma : Kinetic Mechanism and Experimental Verification

    No full text
    International audienceThe results of experiments and calculations performed at the Laboratory of Physics of Nonequilibrium Systems, Moscow Institute of Physics and Technology from 1996 to 2008 to demonstrate the efficiency of low-temperature plasma in initiation of combustion of gas mixtures over a wide range of initial conditions are surveyed. In the studies reviewed, a method for quantitative analysis of kinetic processes during ignition of combustible gas mixtures by nonequilibrium plasma was developed

    Mechanism of ignition by non-equilibrium plasma

    No full text
    International audienceThe kinetics of ignition in stoichiometric CnH2n 2:O2:Ar mixtures with 90% dilution for n = 15 has been studied experimentally and numerically under the action of a high-voltage nanosecond discharge. It was shown that the initiation of the discharge by a high-voltage pulse 115 kV in amplitude with a specific deposited energy of 1030 mJ/cm3 leads to more than an order of magnitude decrease in the ignition delay time. The generation of atoms, radicals and excited and charged particles by the discharge was numerically described. The role of different atoms and radicals (O, H and CnH2n 1) was analyzed. The temporal evolution of the densities of intermediate components in the plasma assisted ignition was discussed

    A nanosecond surface dielectric barrier discharge at elevated pressures : time-resolved electric field and efficiency of initiation of combustion

    No full text
    International audienceWe study a nanosecond surface dielectric barrier discharge (SDBD) initiated by negative or positive polarity pulses 1015 kV in amplitude in a cable, 2530 ns FWHM, 5 ns rise time, in the regime of a single shot or 3 Hz repetitive frequency. Discharge parameters, namely spatial structure of the discharge and time- and space-resolved electric field are studied in a N2&#8201;:&#8201;O2 = 4&#8201;:&#8201;1 mixture for P = 15 atm. The possibility of igniting a combustible mixture with the help of an SDBD is demonstrated using the example of a stoichiometric C2H6&#8201;:&#8201;O2 mixture at ambient initial temperature and at 1 atm pressure. Flame propagation and ignited volume as a function of time are compared experimentally for two discharge geometries: SDBD and pin-to-pin configurations at the same shape and amplitude of the incident pulse. It is shown that the SDBD can be considered as a multi-point ignition system with maximum energy release near the high-voltage electrode. Numerical modeling of the discharge and subsequent combustion kinetics for the SDBD conditions is performed. The discharge action leads to the production of atoms and radicals as well as to fast gas heating, due to the relaxation of electronic and vibrational degrees of freedom. The calculated ignition delay time is in reasonable agreement with the experimental results
    corecore