36 research outputs found

    From 11% Thin Film to 23% Heterojunction Technology (HJT) PV Cell: Research, Development and Implementation Related 1600 × 1000 mm2 PV Modules in Industrial Production

    Get PDF
    Plasma-enhanced chemical vapor deposition (PECVD) developed for thin film (TF) Si:H-based materials resulted in large area thin film PV cells on glass and flexible substrates. However, these TF cells demonstrate low power conversion efficiency PCE = 11% for double and PCE = 13% for triple junction cells below predicted PCE ≈ 24%. PV cells on crystalline silicon (c-Si) provide PCE ≈ 17–19%. Cost of c-Si PV cells lowered continuously due to reducing price of silicon wafers and enlarging their size. Two factors stimulated a combination of PECVD films and c-Si devices: (a) compatibility of the technologies and (b) possibility for variation of electronic properties in PECVD materials. The latter results in additional build-in electric fields improving charge collection and harvesting solar spectrum. We describe a transformation of PECVD TF solar cell technology for 11% efficiency modules to heterojunction technology (HJT) c-Si modules with 23% efficiency. HJT PV structure comprises c-Si wafer with additional junctions created by PECVD deposited layers allowing development of single wafer PV cells with PCE ≈ 24% and the size limited by wafer (15.6 x 15.6 cm2). The chapter starts with background in PECVD and c-Si PV cells. Then, in Section 2, we describe electronic properties of PECVD materials in HJT PV structures. Section 3 deals with structure and fabrication process for HJT devices. In Section 4, we present and discuss performance characteristics of the devices. Section 5 describes implementation of the developed HJT module (1600 x 1000 mm2) based on HJT single wafer cells in industry with presentation and discussion of characteristics related to industrial production. Finally, Section 6 presents the outlook and summary of the chapter

    Draft genome sequence of Lactobacillus plantarum 2025

    Get PDF
    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain

    Hybrid Silicon-Organic Heterojunction Structures for Photovoltaic Applications

    Get PDF
    The concept for inorganic-organic device is an attractive technology to develop devices with better characteristics and functionality due to the complementary advantages of inorganic and organic materials. This chapter provides an overview of the principal requirements for organic and inorganic semiconductor properties and their fabrication processes and focus on the compatibility between low temperature plasma enhanced chemical vapor deposition (PECVD) and polymer organic materials deposition. The concept for inorganic-organic device was validated with the fabrication of three hybrid thin film photovoltaic structures, based on hydrogenated silicon (Si:H), organic poly(3-hexythiophene): methano-fullerenephenyl-C61-butyric-acid-methyl-ester (P3HT:PCBM), and poly(3,4ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) films. Optoelectronic characteristics, performance characteristics, and interfaces of the different configurations aspects are discussed. Hybrid ITO/PEDOT:PSS/(i)Si:H/(n)Si:H structure results in a remarkably high short circuit current density as large as 17.74 mA/cm2, which is higher than the values in organic or inorganic reference samples. Although some hybrid structures demonstrated substantial improvement of performance, other hybrid structures showed poor performance, further R&D efforts seem to be promising, and should be focused on deeper study of organic materials and related interface properties

    ПАРИТЕТ ПОКУПАТЕЛЬНОЙ СПОСОБНОСТИ ВАЛЮТ: РАЗВИТИЕ МЕТОДОВ И ПРАКТИКИ РАСЧЕТОВ В ПМС СНГ 2014

    Get PDF
    Purchasing power parities (PPP) is a unique tool for macroeconomic analysis. The Global international comparison Program is arranged according to a regional principle. CIS countries form one of the regions. While linking the regional comparison (CIS ICP) results to the global ones, one should bear in mind that Russia participates in EU/OECD regional comparison as well. In the previous comparison cycles the issue of linking regional CIS and EU/OECD comparisons was resolved using the direct linear recalculation method, which ensures fixity of the results, but does not correspond to the common methodology of international comparisons. Within the most recent cycle of CIS ICP which was conducted using 2014 data (2014 CIS ICP), a qualitatively better method was elaborated and used to link regional results - a «partially-multilateral comparison» PMC method. This experience is described in the article.Паритет покупательной способности валют (ППС) представляет собой уникальный инструмент макроэкономического анализа. Глобальная Программа международных сопоставлений (ПМС) организована по региональному принципу, один из регионов - страны СНГ. При включении результатов региональных сопоставлений ПМС СНГ в состав глобальных необходимо также учитывать тот факт, что Россия параллельно принимает участие в сопоставлениях региона ОЭСР-ЕС. В ходе предыдущих циклов сопоставлений вопрос объединения региональных сопоставлений СНГ и ОЭСР-ЕС решался на основе прямого линейного пересчета, позволяющего обеспечить фиксированность результатов, но не соответствующего общей методологии международных сопоставлений. В ходе наиболее недавнего цикла ПМС СНГ, проводившегося по данным за 2014 г. (ПМС СНГ 2014), для объединения региональных результатов был разработан и использован принципиально более качественный метод «частично-многостороннего сопоставления» (метод ЧМС). Этот опыт описывается в настоящей статье

    Binding of LcrV protein from 'Yersinia pestis' to human T-cells induces apoptosis, which is completely blocked by specific antibodies

    Get PDF
    The V antigen (LcrV) of the plague bacterium Yersinia pestis is a potent protective protein that is considered as a vaccine component for humans. LcrV mediates the delivery of Yop toxins into host cells and upregulates TLR2-dependent IL-10 production. Although LcrV can interact with the receptor-bound human interferon-γ (hIFN-γ), the significance of these interactions in plague pathogenesis is not known. In this study, we determined the parameters of specific interactions of LcrV and LcrV68–326 with primary human thymocytes and Jurkat T-leukemia cells in the presence of receptor-bound hIFN-γ. Although the C-terminal region of hIFN-γ contains a GRRA138–141 site needed for high-affinity binding of LcrV and LcrV68–326, in the hIFN-γ homodimer, these GRRA138–141 target sites becomes accessible for targeting by LcrV or LcrV68–326 only after immobilization of the hIFN-γ homodimer on the hIFN-γ receptors of thymocytes or Jurkat T-cells. The interaction of LcrV or LcrV68–326 with receptor-bound hIFN-γ on the thymocytes or Jurkat T-cells caused apoptosis of both cell types, which can be completely blocked by the addition of monoclonal antibodies specific to the LEEL32–35 and DEEI203–206 sites of LcrV. The ability of LcrV to utilize hIFN-γ is insidious and may account in part for the severe symptoms of plague in humans

    S-layer protein 2 of 'Lactobacillus crispatus' 2029, its structural and immunomodulatory characteristics and roles in protective potential of the whole bacteria against foodborne pathogens

    Get PDF
    We have previously demonstrated that human vaginal Lactobacillus crispatus 2029 (LC2029) strain is highly adhesive to cervicovaginal epithelial cells, exhibits antagonistic activity against genitourinary pathogens and expresses surface-layer protein (Slp). The aims of the present study were elucidation of Slp structural and immunomodulatory characteristics and its roles in protective properties of the whole vaginal LC2029 bacteria against foodborne pathogens. Enteric Caco-2 and colon HT-29 cell lines were used as the in vitro models of the human intestinal epithelial layer. LC2029 strain has two homologous surface-layer (S-layer) genes, slp1 and slp2. Whilst we found no evidence for the expression of slp1 under the growth conditions used, a very high level of expression of the slp2 gene was detected. C-terminal part of the amino sequence of Slp2 protein was found to be highly similar to that of the conserved C-terminal region of SlpA protein of L. crispatus Zj001 isolated from pig intestines and CbsA protein of L. crispatus JCM5810 isolated from chicken intestines, and was substantially variable at the N-terminal and middle regions. The amino acid sequence identity between SlpA and CbsA was as high as 84%, whilst the identity levels of these sequences with that of Slp2 were only 49% and 50% (respectively). LC2029 strain was found to be both acid and bile tolerant. Survival in simulated gastric and intestinal juices of LC2029 cells unable to produce Slp2 was reduced by 2-3 logs. Vaginal L. crispatus 1385 (LC1385) strain not expressing Slp was also very sensitive to gastric and intestinal stresses. Slp2 was found to be non-covalently bound to the surface of the bacterium, acting as an adhesin and facilitating interaction of LC2029 lactobacilli with the host immature or fully differentiated Caco-2 cells, as well as HT-29 cells. No toxicity to or damage of Caco-2 or HT-29 epithelial cells were detected after 24 h of colonization by LC2029 lactobacilli. Both Slp2 protein and LC2029 cells induced NF-kB activation in Caco-2 and HT-29 cells, but did not induce expression of innate immunity mediators Il-8, Il-1β, and TNF-α. Slp2 and LC2029 inhibited Il-8 production in Caco-2 and HT-29 cells induced by MALP-2 and increased production of anti-inflammatory cytokine Il-6. Slp2 inhibited production of CXCL1 and RANTES by Caco-2 cells during differentiation and maturation process within 15 days. Culturing Caco-2 and HT-29 cells in the presence of Slp2 increased adhesion of bifidobacteria BLI-2780 to these enterocytes. Upon binding to Caco-2 and HT-29 cells, Slp2 protein and LC2029 lactobacilli were recognized by toll-like receptors (TLR) 2/6. It was shown that LC2029 strain is a strong co-aggregator of foodborne pathogens Campylobacter jejuni, Salmonella enteritidis, and Escherichia coli O157:H used in this study. The Slp2 was responsible for the ability of LC2029 to co-aggregate these enteropathogens. Slp2 and intact LC2029 lactobacilli inhibited foodborne pathogen-induced activation of caspase-9 and caspase-3 as apoptotic biomarkers in Caco-2 and HT-29 cells. In addition, Slp2 and Slp2-positive LC2029 strain reduced adhesion of tested pathogenic bacteria to Caco-2 and HT-29 cells. Slp2-positive LC2029 strain but not Slp2 alone provided bactericidal effect on foodborne pathogens. These results suggest a range of mechanisms involved in inhibition of growth, viability, and cell adhesion properties of pathogenic Proteobacteria by the Slp2 producing LC2029, which may be useful in treatment of necrotizing enterocolitis (NEC) in newborns and foodborne infectious diseases in children and adults, increasing the colonization resistance and maintaining the intestinal homeostasis

    'Limosilactobacillus fermentum' Strain 3872 : antibacterial and immunoregulatory properties and synergy with prebiotics against socially significant antibiotic-resistant infections of animals and humans

    Get PDF
    Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. The high-quality genome sequencing of LF3872 was performed, and a gene encoding a unique bacteriocin was discovered. It was established that the bacteriocin produced by LF3872 (BLF3872) belongs to the family of cell-wall-degrading proteins that cause cell lysis. The antibacterial properties of LF3872 were studied using test cultures of antibiotic-resistant Gram-positive and Gram-negative pathogens. Gram-positive pathogens (Staphylococcus aureus strain 8325-4 and S. aureus strain IIE CI-SA 1246) were highly sensitive to the bacteriolytic action of LF3872. Gram-negative pathogens (Escherichia coli, Salmonella strains, and Campylobacter jejuni strains) were more resistant to the bacteriolytic action of LF3872 compared to Gram-positive pathogens. LF3872 is a strong co-aggregator of Gram-negative pathogens. The cell-free culture supernatant of LF3872 (CSLF3872) induced cell damage in the Gram-positive and Gram-negative test cultures and ATP leakage. In the in vitro experiments, it was found that LF3872 and Actigen prebiotic (Alltech Inc., Nicholasville, KY, USA) exhibited synergistic anti-adhesive activity against Gram-negative pathogens. LF3872 has immunoregulatory properties: it inhibited the lipopolysaccharide-induced production of proinflammatory cytokines IL-8, IL-1β, and TNF-α in a monolayer of Caco-2 cells; inhibited the production of IL-12 and stimulated the production of IL-10 in immature human dendritic cells; and stimulated the production of TGF-β, IFN-γ, and IgA in the immunocompetent cells of intestinal Peyer’s patches (PPs) in mice. These results indicate the possibility of creating a synbiotic based on LF3872 and a prebiotic derived from Saccharomyces cerevisiae cell wall components. Such innovative drugs and biologically active additives are necessary for the implementation of a strategy to reduce the spread of antibiotic-resistant strains of socially significant animal and human infections

    Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    Get PDF
    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%

    Synchronization and Timing in CMS HCAL

    Get PDF
    The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance
    corecore