1,799 research outputs found

    Construction and measurements of a vacuum-swing-adsorption radon-mitigation system

    Full text link
    Long-lived alpha and beta emitters in the 222^{222}Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double-beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the BetaCage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ~20×\times reduction at its output, from 7.47±\pm0.56 to 0.37±\pm0.12 Bq/m3^3, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m3^3.Comment: 5 pages, 3 figures, Proceedings of Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 201

    Status of BetaCage: an Ultra-sensitive Screener for Surface Contamination

    Get PDF
    BetaCage, a gaseous neon time-projection chamber, has been proposed as a viable screener for emitters of low-energy alphas and electrons to which commercial radioactivity counting techniques are insensitive. Using radiopure materials for construction, active and passive shielding from extrinsic backgrounds, large counting area and minimal detector mass, BetaCage will be able to achieve sensitivities of 10^(−5) counts keV^(−1) kg^(−1) day^(−1) in a few days of running time. We report on progress in prototype development work since the last meeting of this workshop

    The BetaCage, an ultra-sensitive screener for surface contamination

    Get PDF
    Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocontamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha- and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas per keV-m2^2-day and 0.1 alphas per m2^2-day, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expected to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95×\times95 cm2^2 sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.Comment: 5 pages, 3 figures, Proceedings of Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 201

    The effective bootstrap

    Get PDF
    We study the numerical bounds obtained using a conformal-bootstrap method - advocated in ref. [1] but never implemented so far - where different points in the plane of conformal cross ratios z and z¯ are sampled. In contrast to the most used method based on derivatives evaluated at the symmetric point z=z¯=1/2, we can consistently "integrate out" higher-dimensional operators and get a reduced simpler, and faster to solve, set of bootstrap equations. We test this "effective" bootstrap by studying the 3D Ising and O(n) vector models and bounds on generic 4D CFTs, for which extensive results are already available in the literature. We also determine the scaling dimensions of certain scalar operators in the O(n) vector models, with n=2,3,4, which have not yet been computed using bootstrap techniques. ArXI

    A prototype low-background multiwire proportional chamber

    Get PDF
    A prototype multiwire proportional chamber (MWPC) was developed to demonstrate the feasibility of constructing a radiopure time projection chamber with MWPC track readout to assay materials for alpha- and beta-emitting surface contaminants for future rare-event-search experiments as well as other scientific fields. The design features and assembly techniques described here are motivated by the position and energy resolution required to reconstruct alpha and beta tracks while efficiently rejecting backgrounds. Results from a test setup using an ^(55)Fe x-ray source indicate excellent operational stability and a near-ideal energy resolution of 15.8% FWHM at 5.89 keV and a gas gain of ~10^4

    Spontaneous magnetization and Hall effect in superconductors with broken time-reversal symmetry

    Full text link
    Broken time reversal symmetry (BTRS) in d wave superconductors is studied and is shown to yield current carrying surface states. The corresponding spontaneous magnetization is temperature independent near the critical temperature Tc for weak BTRS, in accord with recent data. For strong BTRS and thin films we expect a temperature dependent spontaneous magnetization with a paramagnetic anomaly near Tc. The Hall conductance is found to vanish at zero wavevector q and finite frequency w, however at finite q,w it has an unusual structure.Comment: 7 pages, 1 eps figure, Europhysics Letters (in press

    Anomalous specific heat jump in the heavy fermion superconductor CeCoIn5_5

    Full text link
    We study the anomalously large specific heat jump and its systematic change with pressure in CeCoIn5_5 superconductor. Starting with the general free energy functional of the superconductor for a coupled electron boson system, we derived the analytic result of the specific heat jump of the strong coupling superconductivity occurring in the coupled electron boson system. Then using the two component spin-fermion model we calculate the specific heat coefficient C(T)/TC(T)/T both for the normal and superconducting states and show a good agreement with the experiment of CeCoIn5_5. Our result also clearly demonstrated that the specific heat coefficient C(T)/TC(T)/T of a coupled electron boson system can be freely interpreted as a renormalization either of the electronic or of the bosonic degrees of freedom.Comment: 5 pages, 2 figure

    Behavior of the Quantum Critical Point and the Fermi-liquid Domain in the Heavy Fermion Superconductor CeCoIn5 studied by resistivity

    Full text link
    We report detailed very low temperature resistivity measurements on the heavy fermion compounds Ce_{1-x}La_{x}CoIn5 (x=0 and x=0.01), with current applied in two crystallographic directions [100] (basal plane) and [001] (perpendicular to the basal plane) under magnetic field applied in the [001] or [011] direction. We found a Fermi liquid (\rho \propto T^{2}) ground state, in all cases, for fields above the superconducting upper critical field. We discuss the possible location of a field induced quantum critical point with respect to Hc2(0), and compare our measurements with the previous reports in order to give a clear picture of the experimental status on this long debated issue.Comment: 17 pages, 7 figures accepted for publication in JPS

    Analysis of the low-energy electron-recoil spectrum of the CDMS experiment

    Get PDF
    We report on the analysis of the low-energy electron-recoil spectrum from the CDMS II experiment using data with an exposure of 443.2 kg-days. The analysis provides details on the observed counting rate and possible background sources in the energy range of 2 - 8.5 keV. We find no significant excess in the counting rate above background, and compare this observation to the recent DAMA results. In the framework of a conversion of a dark matter particle into electromagnetic energy, our 90% confidence level upper limit of 0.246 events/kg/day at 3.15 keV is lower than the total rate above background observed by DAMA by 8.9σ\sigma. In absence of any specific particle physics model to provide the scaling in cross section between NaI and Ge, we assume a Z^2 scaling. With this assumption the observed rate in DAMA differs from the upper limit in CDMS by 6.8σ\sigma. Under the conservative assumption that the modulation amplitude is 6% of the total rate we obtain upper limits on the modulation amplitude a factor of ~2 less than observed by DAMA, constraining some possible interpretations of this modulation.Comment: 4 pages, 3 figure
    corecore