80 research outputs found

    Fitness, Food, and Biomarkers: Characterizing Body Composition in 19,634 Early Adolescents

    Get PDF
    Adolescent obesity persists as a major concern, especially in Central and Eastern Europe, yet evidence gaps exist regarding the pivotal early adolescent years. Our objective was to provide a comprehensive picture using a holistic approach of measured anthropometry in early adolescence, including body composition, cardiorespiratory fitness (CRF), and reported lifestyle characteristics. We aimed to elucidate potential sex/gender differences throughout and associations to biomarkers of disease risk for obese adolescents. Methods: Trained nurses measured 19,634 early adolescents (12–14-year-olds), we collected parental reports, and, for obese adolescents, fasting blood samples in four major Polish cities using a cross-sectional developmental design. Results: 24.7% boys and 18.6% girls were overweight/obese, and 2886 had BMI ≥ 90th percentile. With increasing age, there was greater risk of obesity among boys (p for trend = 0.001) and a decreasing risk of thinness for girls (p for trend = 0.01). Contrary to debate, we found BMI (continuous) was a useful indicator of measured fat mass (FM). There were 38.6% with CRF in the range of poor/very poor and was accounted for primarily by FM in boys, rather than BMI, and systolic blood pressure in girls. Boys, in comparison to girls, engaged more in sports (t = 127.26, p < 0.0001) and consumed more fast food (t = 188.57, p < 0.0001) and sugar-sweetened beverages (167.46, p < 0.0001). Uric acid, a potential marker for prediabetes, was strongly related to BMI in the obese subsample for both boys and girls. Obese girls showed signs of undernutrition. Conclusion: these findings show that overweight/obesity is by far a larger public health problem than thinness in early adolescence and is characterized differentially by sex/gender. Moreover, poor CRF in this age, which may contribute to life course obesity and disease, highlights the need for integrated and personalized intervention strategies taking sex/gender into account

    Biocompatibility and Bioimaging Application of Carbon Nanoparticles Synthesized by Phosphorus Pentoxide Combustion Method

    Get PDF
    Carbon nanoforms have emerged as a versatile bioimaging tool. In this work, we have synthesized four different carbon nanoparticles of different dimensions (10–100 nm) and variable fluorescence quantum efficiency (0.007 to 0.37) from four different carbon sources by phosphorus pentoxide-mediated combustion. The fluorescence quantum efficiency of the resulting self-passivated nanoparticles has been empirically correlated to the molecular weight and viscosity of the respective carbon source used in the synthesis. The carbon nanoparticles have been found to be significantly biocompatible as observed in the MTS assay. We have applied these biocompatible luminescent carbon nanoparticles as high brightness fluorescent probes for staining human blood platelets with very high target specificity

    Getting them through the door: Social and behavioral determinants of uptake and engagement in an obesity intervention

    Get PDF
    Using data from a large-scale screening program (N = 19634), we aimed to prospectively identify factors predicting uptake (i.e. acceptance of the invitation) and engagement (i.e. participation in at least two sessions) in a multi-component-intensive-behavioral-intervention for obesity-management (MBIOM) intervention targeting adolescents (n = 2862; 12–14 years; BMI ≥90th percentile). Approximately one third of adolescents most in need of weight management declined the initial invitation to enter the MBIOM. Poor diet, sedentary behavior, and parental education predicted willingness to enter and stay in the intervention, however measured body mass index did not matter. Perceived family support, instead of initial motivation, facilitated engagement. Our results provide new insights on the importance of regional socio-geographical factors including trust in local authorities

    The Phylogenetic Structure of Reptile, Avian and Uropathogenic Escherichia coli with Particular Reference to Extraintestinal Pathotypes

    Get PDF
    The impact of the Gram-negative bacterium Escherichia coli (E. coli) on the microbiomic and pathogenic phenomena occurring in humans and other warm-blooded animals is relatively well-recognized. At the same time, there are scant data concerning the role of E. coli strains in the health and disease of cold-blooded animals. It is presently known that reptiles are common asymptomatic carriers of another human pathogen, Salmonella, which, when transferred to humans, may cause a disease referred to as reptile-associated salmonellosis (RAS). We therefore hypothesized that reptiles may also be carriers of specific E. coli strains (reptilian Escherichia coli, RepEC) which may differ in their genetic composition from the human uropathogenic strain (UPEC) and avian pathogenic E. coli (APEC). Therefore, we isolated RepECs (n = 24) from reptile feces and compared isolated strains’ pathogenic potentials and phylogenic relations with the aforementioned UPEC (n = 24) and APEC (n = 24) strains. To this end, we conducted an array of molecular analyses, including determination of the phylogenetic groups of E. coli, virulence genotyping, Pulsed-Field Gel Electrophoresis-Restriction Analysis (RA-PFGE) and genetic population structure analysis using Multi-Locus Sequence Typing (MLST). The majority of the tested RepEC strains belonged to nonpathogenic phylogroups, with an important exception of one strain, which belonged to the pathogenic group B2, typical of extraintestinal pathogenic E. coli. This strain was part of the globally disseminated ST131 lineage. Unlike RepEC strains and in line with previous studies, a high percentage of UPEC strains belonged to the phylogroup B2, and the percentage distribution of phylogroups among the tested APEC strains was relatively homogenous, with most coming from the following nonpathogenic groups: C, A and B1. The RA-PFGE displayed a high genetic diversity among all the tested E. coli groups. In the case of RepEC strains, the frequency of occurrence of virulence genes (VGs) was lower than in the UPEC and APEC strains. The presented study is one of the first attempting to compare the phylogenetic structures of E. coli populations isolated from three groups of vertebrates: reptiles, birds and mammals (humans).</jats:p

    SMARTphone-based, early cardiac REHABilitation in patients with acute coronary syndromes [SMART-REHAB Trial]: A randomized controlled trial protocol

    Get PDF
    © 2016 The Author(s). Background: There are well-documented treatment gaps in secondary prevention of coronary heart disease and no clear guidelines to assist early physical activity after acute coronary syndromes (ACS). Smartphone technology may provide an innovative platform to close these gaps. This paper describes the study design of a randomized controlled trial assessing whether a smartphone-based secondary prevention program can facilitate early physical activity and improve cardiovascular health in patients with ACS. Methods: We have developed a multi-faceted, patient-centred smartphone-based secondary prevention program emphasizing early physical activity with a graduated walking program initiated on discharge from ACS admission. The program incorporates; physical activity tracking through the smartphone's accelerometer with interactive feedback and goal setting; a dynamic dashboard to review and optimize cardiovascular risk factors; educational messages delivered twice weekly; a photographic food diary; pharmacotherapy review; and support through a short message service. The primary endpoint of the trial is change in exercise capacity, as measured by the change in six-minute walk test distance at 8-weeks when compared to baseline. Secondary endpoints include improvements in cardiovascular risk factor status, psychological well-being and quality of life, medication adherence, uptake of cardiac rehabilitation and re-hospitalizations. Discussion: This randomized controlled trial will use a smartphone-phone based secondary prevention program to emphasize early physical activity post-ACS. It will provide evidence regarding the feasibility and utility of this innovative platform in closing the treatment gaps in secondary prevention. Trial registration: The trial was retrospectively registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) on April 4, 2016. The registration number is ACTRN12616000426482

    Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

    No full text
    Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR) ADS80-SH92 aerial imagery using an object-based image analysis (OBIA) approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI), the normalised difference water index (NDWI), and its standard deviation (SDNDWI) to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km−2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of &gt; 0.9 and a Cohen's kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km−2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by &gt; 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method

    Generating dem from lidar data – comparison of available software tools

    No full text
    In recent years many software tools and applications have appeared that offer procedures, scripts and algorithms to process and visualize ALS data. This variety of software tools and of “point cloud” processing methods contributed to the aim of this study: to assess algorithms available in various software tools that are used to classify LIDAR “point cloud” data, through a careful examination of Digital Elevation Models (DEMs) generated from LIDAR data on a base of these algorithms. The works focused on the most important available software tools: both commercial and open source ones. Two sites in a mountain area were selected for the study. The area of each site is 0.645 sq km. DEMs generated with analysed software tools ware compared with a reference dataset, generated using manual methods to eliminate non ground points. Surfaces were analysed using raster analysis. Minimum, maximum and mean differences between reference DEM and DEMs generated with analysed software tools were calculated, together with Root Mean Square Error. Differences between DEMs were also examined visually using transects along the grid axes in the test sites
    corecore