27 research outputs found

    A Climatology of the Tropospheric Thermal Stratification Using Saturation Potential Vorticity

    Get PDF
    The condition of convective neutrality is assessed in the troposphere by calculating the saturation potential vorticity P* from reanalysis data. Regions of the atmosphere in which saturation entropy is constant along isosurfaces of absolute angular momentum, a state indicative of slantwise-convective neutrality, have values of P* equal to zero. In a global reanalysis dataset spanning the years 1970–2004, tropospheric regions are identified in which P* is near zero, implying that vertical convection or slantwise convection may be important in determining the local thermal stratification. Convectively neutral air masses are common not only in the Tropics but also in higher latitudes, for example, over midlatitude continents in summer and in storm tracks over oceans in winter. Large-scale eddies appear to stabilize parts of the lower troposphere, particularly in winter

    Extent of Hadley circulations in dry atmospheres

    Get PDF
    The subtropical terminus of the Hadley circulation is interpreted as the latitude poleward of which vertical wave activity fluxes (meridional eddy entropy fluxes) become sufficiently deep to reach the upper troposphere. This leads to a sign change of the upper-tropospheric divergence of meridional wave activity fluxes (convergence of meridional eddy angular momentum fluxes) and marks the transition from the tropical Hadley cell to the extratropical Ferrel cell. A quantitative formulation for determining the depth of vertical wave activity fluxes and thus the terminus of the Hadley circulation is proposed based on the supercriticality, a measure of the slope of isentropes. The supercriticality assumes an approximately constant value at the terminus of the Hadley circulation in a series of simulations with an idealized dry general circulation model. However, it is unclear how to generalize this supercriticality-based formulation to moist atmospheres

    On the maintenance of weak meridional temperature gradients during warm climates

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2005.Includes bibliographical references (p. 238-248).This thesis examines the dynamics of equable climates. The underlying physics of two mechanisms by which weak meridional temperature gradients might be maintained are studied. First, I examine the evolution of stratospheric dynamics and winter temperatures when the surface temperature gradient and tropospheric eddy energy decrease in order to assess whether large-scale conditions are more favorable for polar stratospheric cloud formation. Second, I examine whether the combination of high carbon dioxide and interactive, tropical cyclone dependent ocean mixing is sufficient to maintain a weak temperature gradient. I examine planetary wave generation, the energetics of the general circulation, and vertical wave propagation in a general circulation model with a resolved stratosphere forced with a weak surface temperature gradient. Compared to the present climate, transient eddy energy decreases, but stationary eddy energy does not. The polar tropopause rises, which supports a weaker temperature gradient in the lower stratosphere, a weaker stratospheric jet, and an increase in the wave activity vertically propagating into the stratosphere.(cont.) As a result, the residual mean circulation strengthens and temperatures in the polar stratosphere change little even when the surface temperature gradient is quite weak. Temperatures in the Arctic polar vortex remain much warmer than radiative equilibrium, inhibiting large-scale polar stratospheric cloud formation. The height of the extratropical tropopause rises and the tropospheric lapse rate follows a moist adiabat when surface temperatures are warm, suggesting convection plays a significant role in setting extratropical tropospheric stratification during warm climates. The second part of the thesis addresses the role of tropical cyclone induced mixing in the oceans' general circulation. I examine the sensitivity of the oceans' meridional overturning circulation and heat flux to the locations at which mixing occurs. When confined to the tropical Atlantic, a robust single-basin circulation can be maintained, but the Indian and Pacific become quiescent, cut off from the dynamics occurring in the Atlantic. Mixing isolated in the tropical Pacific, however, can support a global circulation by mechanically lifting deep fluid parcels formed in the Atlantic, raising their potential energy.(cont.) The oceans' total heat flux is found to be sensitive to mixing in the tropics, in both the Atlantic and the Pacific, and in the upper 400 meters of the ocean. Coupling mixing with a measure of tropical cyclone intensity and frequency creates a positive feedback between climate and the poleward energy flux. When combined with a parameterization of the background mixing that evolves with stratification, a warmer, less stratified ocean can support a stronger diapycnal mixing during warm climates with high loads of carbon dioxide. In these simulations, tropical cyclones are stronger and more frequent, providing an increased energy source for more vigorous mixing in the tropical oceans. Combined with a stratification-dependent mixing scheme, such mixing provides a sufficiently strong heat flux that is able to maintain weak sea surface temperature gradients.by Robert Lindsay Korty.Ph.D

    Nd Isotopic Structure of the Pacific Ocean 70-30 and Numerical Evidence for Vigorous Ocean Circulation and Ocean Heat Transport in a Greenhouse World

    Get PDF
    The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific ~70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until ~40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients

    Increased hurricane frequency near Florida during Younger Dryas Atlantic Meridional Overturning Circulation slowdown

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geology 45 (2017): 1047-1050, doi:10.1130/G39270.1.The risk posed by intensification of North Atlantic hurricane activity remains controversial, in part due to a lack of available storm proxy records that extend beyond the relatively stable climates of the late Holocene. Here we present a record of storm-triggered turbidite deposition offshore the Dry Tortugas, south Florida, USA, that spans abrupt transitions in North Atlantic sea-surface temperature and Atlantic Meridional Overturning Circulation (AMOC) during the Younger Dryas (12.9–11.7 k.y. B.P.). Despite potentially hostile conditions for cyclogenesis in the tropical North Atlantic at this time, our record and numerical experiments suggest that strong hurricanes may have regularly impacted Florida. Less severe surface cooling at mid-latitudes (~20–40°N) than across much of the tropical North Atlantic (~10–20°N) in response to AMOC reduction may best explain strong hurricane activity during the Younger Dryas near the Dry Tortugas and, potentially, along the entire southeastern coast of the United States.This work was supported by the U. S. Geological Survey Climate and Land Use Change Research and Development Program (Toomey), the Woods Hole Oceanographic Institution Ocean and Climate Change Institute (Toomey) and National Science Foundation grants (OCE-1356708 to Donnelly; 1356509 to van Hengstum)

    Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period

    Get PDF
    Given the threats that tropical cyclones (TC) pose to people and infrastructure, there is significant interest in how the climatology of these storms may change with climate. The global historical record has been extensively examined, but it is short and plagued with recurring questions about its homogeneity, limiting its effectiveness at assessing how TCs vary with climate. Past warm intervals provide an opportunity to quantify TC behavior in a warmer-than-present world. Here, we use a TC-resolving (∼25 km) global atmospheric model to investigate TC activity during the mid-Pliocene warm period (3.264−3.025 Ma) that shares similarities with projections of future climate. Two experiments, one driven by the reconstructed sea surface temperatures (SSTs) and the other by the SSTs from an ensemble of mid-Pliocene simulations, consistently predict enhanced global-average peak TC intensity during the mid-Pliocene coupled with longer duration, increased power dissipation, and a poleward migration of the location of peak intensity. The simulations are similar to global TC changes observed during recent global warming, as well as those of many future projections, providing a window into the potential TC activity that may be expected in a warmer world. Changes to power dissipation and TC frequency, especially in the Pacific, are sensitive to the different SST patterns, which could affect the viability of the role of TCs as a factor for maintaining a reduced zonal SST gradient during the Pliocene, as recently hypothesized

    Dynamical downscaling of tropical cyclones from CCSM4 simulations of the Last Glacial Maximum

    Get PDF
    Dynamical downscaling of simulations of the Last Glacial Maximum (LGM) and late twentieth century (20C) were conducted using the Weather Research and Forecasting (WRF) model with the aim of (1) understanding how the downscaled kinematic and thermodynamic variables influence simulated tropical cyclone (TC) activity over the western North Pacific during the LGM and the 20C periods and (2) to test the relevance of TC genesis factors for the colder LGM climate. The results show that, despite the lower temperatures during the LGM, the downscaled TC climatology over the western North Pacific in the LGM simulation does not differ significantly from that in the 20C simulation. Among the TC environmental factors, the TC potential intensity, mid‐tropospheric entropy deficit, and vertical wind shear during the LGM were consistent with previous analyses of TC genesis factors in LGM global climate model simulations. Changes in TC genesis density between the LGM and the 20C simulations seem to be well represented by the ventilation index, a nondimensional measure of the combined effects of vertical wind shear, and thermodynamic properties, suggesting the potential applicability of those factors for TC activity evaluation during the LGM and possibly other climates
    corecore