394 research outputs found
Electrical transport and optical studies of ferromagnetic Cobalt doped ZnO nanoparticles exhibiting a metal-insulator transition
The observed correlation of oxygen vacancies and room temperature
ferromagnetic ordering in Co doped ZnO1-o nanoparticles reported earlier (Naeem
et al Nanotechnology 17, 2675-2680) has been further explored by transport and
optical measurements. In these particles room temperature ferromagnetic
ordering had been observed to occur only after annealing in forming gas. In the
current work the optical properties have been studied by diffuse reflection
spectroscopy in the UV-Vis region and the band gap of the Co doped compositions
has been found to decrease with Co addition. Reflections minima are observed at
the energies characteristic of Co+2 d-d (tethrahedral symmetry) crystal field
transitions, further establishing the presence of Co in substitutional sites.
Electrical transport measurements on palletized samples of the nanoparticles
show that the effect of a forming gas is to strongly decrease the resistivity
with increasing Co concentration. For the air annealed and non-ferromagnetic
samples the variation in the resistivity as a function of Co content are
opposite to those observed in the particles prepared in forming gas. The
ferromagnetic samples exhibit an apparent change from insulator to metal with
increasing temperatures for T>380K and this change becomes more pronounced with
increasing Co content. The magnetic and resistive behaviors are correlated by
considering the model by Calderon et al [M. J. Calderon and S. D. Sarma, Annals
of Physics 2007 (Accepted doi: 10.1016/j.aop.2007.01.010] where the
ferromagnetism changes from being mediated by polarons in the low temperature
insulating region to being mediated by the carriers released from the weakly
bound states in the higher temperature metallic region.Comment: 7 pages, 6 figure
How to measure patent thickets – a novel approach
The existing literature identifies patent thickets indirectly. In this paper we propose a novel measure based on patent citations which allows us to measure the density of patent thickets directly. We discuss the algorithm which generates the measure and present descriptive results validating it. Moreover, we identify technology areas which are particularly impacted by patent thickets
SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1
BACKGROUND
We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown.
METHODS
A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer.
RESULTS
Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53.
CONCLUSION
Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity
A study of patent thickets
Report analysing whether entry of UK enterprises into patenting in a technology area is affected by patent thickets in the technology area
Quantitative 3-Dimensional Imaging of Murine Neointimal and Atherosclerotic Lesions by Optical Projection Tomography
Traditional methods for the analysis of vascular lesion formation are labour intensive to perform - restricting study to ‘snapshots’ within each vessel. This study was undertaken to determine the suitability of optical projection tomographic (OPT) imaging for the 3-dimensional representation and quantification of intimal lesions in mouse arteries. = 0.85), confirming both the accuracy of this methodology and its non-destructive nature. It was also possible to record volumetric measurements of lesion and lumen and these were highly reproducible between scans (coefficient of variation = 5.36%, 11.39% and 4.79% for wire- and ligation-injury and atherosclerosis, respectively).These data demonstrate the eminent suitability of OPT for imaging of atherosclerotic and neointimal lesion formation, providing a much needed means for the routine 3-dimensional analysis of vascular morphology in studies of this type
Social Learning and Innovation Cycles
We study social learning and innovation in an overlapping generations model, emphasizing the trade-off between marginal innovation (combining existing technologies) and radical innovation (breaking new ground). We characterize both short-term and long-term dynamics of innovation, and the intergenerational accumulation of knowledge. Innovation cycles emerge endogenously, but the number of cycles is finite almost surely, and radical innovation terminates in finite time. We identify a negative relationship between past successes and the magnitude of radical innovation, combining insights from the multi-armed bandit literature with a spatial representation of innovation. Past successes reduce the incremental value of experimentation, and result in less ambitious innovation. In our framework, patents promote radical innovation through two channels: by increasing the expected benefit of radical innovation and by increasing the cost of marginal innovation. Our analysis suggests that sustaining radical innovation in the long-run requires external intervention
Loss of Octarepeats in Two Processed Prion Pseudogenes in the Red Squirrel, Sciurus vulgaris
The N-terminal region of the mammalian prion protein (PrP) contains an ‘octapeptide’ repeat which is involved in copper binding. This eight- or nine-residue peptide is repeated four to seven times, depending on the species, and polymorphisms in repeat number do occur. Alleles with three repeats are very rare in humans and goats, and deduced PrP sequences with two repeats have only been reported in two lemur species and in the red squirrel, Sciurus vulgaris. We here describe that the red squirrel two-repeat PrP sequence actually represents a retroposed pseudogene, and that an additional and older processed pseudogene with three repeats also occurs in this species as well as in ground squirrels. We argue that repeat numbers may tend to contract rather than expand in prion retropseudogenes, and that functional prion genes with two repeats may not be viable
- …