113 research outputs found
Plasma synthesis of single crystal silicon nanoparticles for novel electronic device applications
Single-crystal nanoparticles of silicon, several tens of nm in diameter, may
be suitable as building blocks for single-nanoparticle electronic devices.
Previous studies of nanoparticles produced in low-pressure plasmas have
demonstrated the synthesis nanocrystals of 2-10 nm diameter but larger
particles were amorphous or polycrystalline. This work reports the use of a
constricted, filamentary capacitively coupled low-pressure plasma to produce
single-crystal silicon nanoparticles with diameters between 20-80 nm. Particles
are highly oriented with predominant cubic shape. The particle size
distribution is rather monodisperse. Electron microscopy studies confirm that
the nanoparticles are highly oriented diamond-cubic silicon.Comment: accepted for publication in Plasma Physics and Controlled Fusion,
scheduled for Dec. 2004 F
Observations of Microwave Continuum Emission from Air Shower Plasmas
We investigate a possible new technique for microwave measurements of
ultra-high energy cosmic ray (UHECR) extensive air showers which relies on
detection of expected continuum radiation in the microwave range, caused by
free-electron collisions with neutrals in the tenuous plasma left after the
passage of the shower. We performed an initial experiment at the AWA (Argonne
Wakefield Accelerator) laboratory in 2003 and measured broadband microwave
emission from air ionized via high energy electrons and photons. A follow-up
experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004
confirmed the major features of the previous AWA observations with better
precision and made additional measurements relevant to the calorimetric
capabilities of the method. Prompted by these results we built a prototype
detector using satellite television technology, and have made measurements
indicating possible detection of cosmic ray extensive air showers. The method,
if confirmed by experiments now in progress, could provide a high-duty cycle
complement to current nitrogen fluorescence observations of UHECR, which are
limited to dark, clear nights. By contrast, decimeter microwave observations
can be made both night and day, in clear or cloudy weather, or even in the
presence of moderate precipitation.Comment: 15 pages, 13 figure
Effect of Electron Energy Distribution Function on Power Deposition and Plasma Density in an Inductively Coupled Discharge at Very Low Pressures
A self-consistent 1-D model was developed to study the effect of the electron
energy distribution function (EEDF) on power deposition and plasma density
profiles in a planar inductively coupled plasma (ICP) in the non-local regime
(pressure < 10 mTorr). The model consisted of three modules: (1) an electron
energy distribution function (EEDF) module to compute the non-Maxwellian EEDF,
(2) a non-local electron kinetics module to predict the non-local electron
conductivity, RF current, electric field and power deposition profiles in the
non-uniform plasma, and (3) a heavy species transport module to solve for the
ion density and velocity profiles as well as the metastable density. Results
using the non-Maxwellian EEDF model were compared with predictions using a
Maxwellian EEDF, under otherwise identical conditions. The RF electric field,
current, and power deposition profiles were different, especially at 1mTorr,
for which the electron effective mean free path was larger than the skin depth.
The plasma density predicted by the Maxwellian EEDF was up to 93% larger for
the conditions examined. Thus, the non-Maxwellian EEDF must be accounted for in
modeling ICPs at very low pressures.Comment: 19 pages submitted to Plasma Sources Sci. Techno
UV continuum emission and diagnostics of hydrogen-containing non-equilibrium plasmas
For the first time the emission of the radiative dissociation continuum of
the hydrogen molecule ( electronic
transition) is proposed to be used as a source of information for the
spectroscopic diagnostics of non-equilibrium plasmas. The detailed analysis of
excitation-deactivation kinetics, rate constants of various collisional and
radiative transitions and fitting procedures made it possible to develop two
new methods of diagnostics of: (1) the ground state
vibrational temperature from the relative intensity
distribution, and (2) the rate of electron impact dissociation
(d[\mbox{H_{2}}]/dt)_{\text{diss}} from the absolute intensity of the
continuum. A known method of determination of from relative
intensities of Fulcher- bands was seriously corrected and simplified
due to the revision of transition probabilities and cross sections of
electron impact excitation. General considerations are illustrated
with examples of experiments in pure hydrogen capillary-arc and H+Ar
microwave discharges.Comment: REVTeX, 25 pages + 12 figures + 9 tables. Phys. Rev. E, eprint
replaced because of resubmission to journal after referee's 2nd repor
Spectroscopic characterization of atmospheric pressure um-jet plasma source
A radio frequency um-jet plasma source is studied using He/O2 mixture. This
um-jet can be used for different applications as a source of chemical active
species e.g. oxygen atoms, molecular metastables and ozone. Using
absolutely-calibrated optical emission spectroscopy and numerical simulation,
the gas temperature in active plasma region and plasma parameters (electron
density and electron distribution function) are determined. Concentrations of
oxygen atoms and ozone in the plasma channel and in the effluent of the plasma
source are measured using emission and absorption spectroscopy. To interpret
the measured spatial distributions, the steady-state species' concentrations
are calculated using determined plasma parameters and gas temperature. At that
the influence of the surface processes and gas flow regime on the loss of the
active species in the plasma source are discussed. The measured spatial
distributions of oxygen atom and ozone densities are compared with the
simulated ones.Comment: 29 pages, 10 figure
Physics and applications of dusty plasmas: The Perspectives 2023
Dusty plasmas are electrically quasi-neutral media that, along with electrons, ions, neutral gas, radiation, and electric and/or magnetic fields, also contain solid or liquid particles with sizes ranging from a few nanometers to a few micrometers. These media can be found in many natural environments as well as in various laboratory setups and industrial applications. As a separate branch of plasma physics, the field of dusty plasma physics was born in the beginning of 1990s at the intersection of the interests of the communities investigating astrophysical and technological plasmas. An additional boost to the development of the field was given by the discovery of plasma crystals leading to a series of microgravity experiments of which the purpose was to investigate generic phenomena in condensed matter physics using strongly coupled complex (dusty) plasmas as model systems. Finally, the field has gained an increasing amount of attention due to its inevitable connection to the development of novel applications ranging from the synthesis of functional nanoparticles to nuclear fusion and from particle sensing and diagnostics to nano-contamination control. The purpose of the present perspectives paper is to identify promising new developments and research directions for the field. As such, dusty plasmas are considered in their entire variety: from classical low-pressure noble-gas dusty discharges to atmospheric pressure plasmas with aerosols and from rarefied astrophysical plasmas to dense plasmas in nuclear fusion devices. Both fundamental and application aspects are covered
The 2017 Plasma Roadmap: Low temperature plasma science and technology
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.I Adamovich et al 2017 J. Phys. D: Appl. Phys. 50 32300
Collisionless heating in radio-frequency discharges: a review
Radio-frequency discharges are practically and scientifically interesting. A practical understanding of such discharges requires, among other things, a quantitative appreciation of the mechanisms involved in heating electrons, since this heating is the proximate
cause of the ionization that sustains the plasma. When these discharges are operated at sufficiently low pressure, collisionless electron heating can be an important and even the dominant mechanism. Since the low pressure regime is important for many applications, understanding collisionless heating is both theoretically and
practically important. This review is concerned with the state of theoretical knowledge of collisionless heating in both inductive and capacitive discharges
- âŠ