179 research outputs found
Soft X-ray resonant Kerr rotation measurement and simulation of element-resolved and interface-sensitive magnetization reversals in a NiFe/FeMn/Co trilayer structure
We report experimental observations of element- and buried interface-resolved magnetization reversals in an oppositely exchange-biased NiFeFeMnCo trilayer structure by soft x-ray resonant Kerr rotation measurements. Not only Co-, Ni-, Fe-specific exchange-biased loops but also interfacial uncompensated (UC) Fe reversal loops coupled to the individual Co and NiFe layers are separately observed. From the experimental results interpreted with the help of the model simulations of soft x-ray resonant Kerr rotation, the effective thicknesses of interfacial UC regions at the buried interfaces of both FeMnCo and NiFeFeMn are found to be tUC =13??2 A and 6??4 A, respectively. The depth sensitivity as well as element specificity of the x-ray resonant Kerr effect offer an elegant way into the investigations of element- and depth-resolved magnetization reversals of ferromagnetic ultrathin regions at buried interfaces in multicomponent multilayer films.open91
Disorder-induced microscopic magnetic memory
Using coherent x-ray speckle metrology, we have measured the influence of
disorder on major loop return point memory (RPM) and complementary point memory
(CPM) for a series of perpendicular anisotropy Co/Pt multilayer films. In the
low disorder limit, the domain structures show no memory with field cycling--no
RPM and no CPM. With increasing disorder, we observe the onset and the
saturation of both the RPM and the CPM. These results provide the first direct
ensemble-sensitive experimental study of the effects of varying disorder on
microscopic magnetic memory and are compared against the predictions of
existing theories.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review
Letters in Nov. 200
Theory of Room Temperature Ferromagnet V(TCNE)_x (1.5 < x < 2): Role of Hidden Flat Bands
Theoretical studies on the possible origin of room temperature ferromagnetism
(ferromagnetic once crystallized) in the molecular transition metal complex,
V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no
definite understanding of crystal structure so far because of sample quality,
though the effective valence of V is known to be close to +2. Proposing a new
crystal structure for the stoichiometric case of x=2, where the valence of each
TCNE molecule is -1 and resistivity shows insulating behavior, exchange
interaction among d-electrons on adjacent V atoms has been estimated based on
the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that
Hund's coupling among d orbitals within the same V atoms and antiferromagnetic
coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to
hybridization result in overall ferromagnetism (to be precise, ferrimagnetism).
This view based on localized electrons is supplemented by the band picture,
which indicates the existence of a flat band expected to lead to ferromagnetism
as well consistent with the localized view. The off-stoichiometric cases (x<2),
which still show ferromagnetism but semiconducting transport properties, have
been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3
(March issue), in press; 6 pages, 8 figure
Vortex-antivortex assisted magnetization dynamics in a semi-continuous thin-film model system studied by micromagnetic simulations
We have studied magnetization M dynamics in a semicontinuous 33-nm -thick Fe model system, which approaches new equilibrium states under various magnetic fields, H=0, -1, -10, and -30 Oe, starting from an initial M configuration of complex microstructures experimentally observed in a real continuous Fe film. Simulation results with H=0 clearly reveal that small needle-shaped domains and ripple structures found in a frozen state of the demagnetized Fe film continue to grow far into a surrounding 180?? domain, and that zigzag folding structures appear through the M dynamic evolution assisted by vortex and antivortex. Furthermore, it is found that many domain walls of a cross-tie type exhibit their dynamic developments under H=-10 and -30 Oe, caused by interactions between vortex and antivortex states. This vortex-antivortex assisted M dynamic evolution offers deeper insights into the comprehensive understanding of the static or dynamic properties of M reversal processes as well as additional features or more details of magnetic microstructures in real continuous films.open141
Disorder-induced magnetic memory: Experiments and theories
Beautiful theories of magnetic hysteresis based on random microscopic
disorder have been developed over the past ten years. Our goal was to directly
compare these theories with precise experiments. We first developed and then
applied coherent x-ray speckle metrology to a series of thin multilayer
perpendicular magnetic materials. To directly observe the effects of disorder,
we deliberately introduced increasing degrees of disorder into our films. We
used coherent x-rays to generate highly speckled magnetic scattering patterns.
The apparently random arrangement of the speckles is due to the exact
configuration of the magnetic domains in the sample. In effect, each speckle
pattern acts as a unique fingerprint for the magnetic domain configuration.
Small changes in the domain structure change the speckles, and comparison of
the different speckle patterns provides a quantitative determination of how
much the domain structure has changed. How is the magnetic domain configuration
at one point on the major hysteresis loop related to the configurations at the
same point on the loop during subsequent cycles? The microscopic return-point
memory(RPM) is partial and imperfect in the disordered samples, and completely
absent when the disorder was not present. We found the complementary-point
memory(CPM) is also partial and imperfect in the disordered samples and
completely absent when the disorder was not present. We found that the RPM is
always a little larger than the CPM. We also studied the correlations between
the domains within a single ascending or descending loop. We developed new
theoretical models that do fit our experiments.Comment: 26 pages, 25 figures, Accepted by Physical Review B 01/25/0
Prediction of huge X-ray Faraday rotation at the Gd N_4,5 threshold
X-ray absorption spectra in a wide energy range around the 4d-4f excitation
threshold of Gd were recorded by total electron yield from in-plane magnetized
Gd metal films. Matching the experimental spectra to tabulated absorption data
reveals unprecedented short light absorption lengths down to 3 nm. The
associated real parts of the refractive index for circularly polarized light
propagating parallel or antiparallel to the Gd magnetization, determined
through the Kramers-Kronig transformation, correspond to a magneto-optical
Faraday rotation of 0.7 degrees per atomic layer. This finding shall allow the
study of magnetic structure and magnetization dynamics of lanthanide elements
in nanosize systems and dilute alloys.Comment: 4 pages, 2 figures, final version resubmitted to Phys. Rev. B, Brief
Reports. Minor change
True Superconductivity in a 2D "Superconducting-Insulating" System
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition. Based on low-field
data and I-V characteristics, we find evidence of a low temperature
Metal-to-Superconductor transition. This transition is characterized by
hysteretic magnetoresistance and discontinuities in the I-V curves. The
metallic phase just above the transition is different from the "Fermi Metal"
before superconductivity sets in.Comment: 3 pages, 4 figure
Suppressed Magnetization at the Surfaces and Interfaces of Ferromagnetic Metallic Manganites
What happens to ferromagnetism at the surfaces and interfaces of manganites?
With the competition between charge, spin, and orbital degrees of freedom, it
is not surprising that the surface behavior may be profoundly different than
that of the bulk. Using a powerful combination of two surface probes, tunneling
and polarized x-ray interactions, this paper reviews our work on the nature of
the electronic and magnetic states at manganite surfaces and interfaces. The
general observation is that ferromagnetism is not the lowest energy state at
the surface or interface, which results in a suppression or even loss of
ferromagnetic order at the surface. Two cases will be discussed ranging from
the surface of the quasi-2D bilayer manganite
(LaSrMnO) to the 3D Perovskite
(LaSrMnO)/SrTiO interface. For the bilayer manganite,
that is, ferromagnetic and conducting in the bulk, these probes present clear
evidence for an intrinsic insulating non-ferromagnetic surface layer atop
adjacent subsurface layers that display the full bulk magnetization. This
abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer
coupling native to these quasi-two-dimensional materials. This is in marked
contrast to the non-layered manganite system
(LaSrMnO/SrTiO), whose magnetization near the interface
is less than half the bulk value at low temperatures and decreases with
increasing temperature at a faster rate than the bulk.Comment: 15 pages, 13 figure
X-ray standing wave and reflectometric characterization of multilayer structures
Microstructural characterization of synthetic periodic multilayers by x-ray
standing waves have been presented. It has been shown that the analysis of
multilayers by combined x-ray reflectometry (XRR) and x-ray standing wave (XSW)
techniques can overcome the deficiencies of the individual techniques in
microstructural analysis. While interface roughnesses are more accurately
determined by the XRR technique, layer composition is more accurately
determined by the XSW technique where an element is directly identified by its
characteristic emission. These aspects have been explained with an example of a
20 period Pt/C multilayer. The composition of the C-layers due to Pt
dissolution in the C-layers, PtC, has been determined by the XSW
technique. In the XSW analysis when the whole amount of Pt present in the
C-layers is assumed to be within the broadened interface, it l eads to larger
interface roughness values, inconsistent with those determined by the XRR
technique. Constraining the interface roughness values to those determined by
the XRR technique, requires an additional amount of dissolved Pt in the
C-layers to expl ain the Pt fluorescence yield excited by the standing wave
field. This analysis provides the average composition PtC of the
C-layers .Comment: 12 pages RevTex, 10 eps figures embedde
Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic-ferromagnet interface through standing wave excitation
We demonstrate that combining standing wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-RIXS has been applied to multilayer heterostructures consisting of a superconductor La1.85Sr0.15CuO4 (LSCO) and a half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects
- …
