18 research outputs found

    Особенности процесса трещинообразования в массиве при управлении его газодинамикой

    Get PDF
    Исследован процесс сдерживания перехода угля из потенциально устойчивого состояния в стадию бурного разрушения. Ей, как правило, предшествует некоторый промежуток времени относительного затишья. Особенно важно улавливать этот момент среди массы различных откликов массива на ведение горных работ. Одним из вариантов управления развитием и релаксацией системы трещин может служить физико-химическая обработка.The inhibition process of coal transition from the potentially stable state in the stage of stormy destruction is investigation. As a rule, to it is preceded some interval of relative time calm. It is especially important to catch this moment among mass of different responses of array on the conduct of mountain works. Physical and chemical treatment can serve as one of control variants the development and relaxation of the cracks system

    Fluoxetine Exerts Age-Dependent Effects on Behavior and Amygdala Neuroplasticity in the Rat

    Get PDF
    The selective serotonin reuptake inhibitor (SSRI) Prozac® (fluoxetine) is the only registered antidepressant to treat depression in children and adolescents. Yet, while the safety of SSRIs has been well established in adults, serotonin exerts neurotrophic actions in the developing brain and thereby may have harmful effects in adolescents. Here we treated adolescent and adult rats chronically with fluoxetine (12 mg/kg) at postnatal day (PND) 25 to 46 and from PND 67 to 88, respectively, and tested the animals 7–14 days after the last injection when (nor)fluoxetine in blood plasma had been washed out, as determined by HPLC. Plasma (nor)fluoxetine levels were also measured 5 hrs after the last fluoxetine injection, and matched clinical levels. Adolescent rats displayed increased behavioral despair in the forced swim test, which was not seen in adult fluoxetine treated rats. In addition, beneficial effects of fluoxetine on wakefulness as measured by electroencephalography in adults was not seen in adolescent rats, and age-dependent effects on the acoustic startle response and prepulse inhibition were observed. On the other hand, adolescent rats showed resilience to the anorexic effects of fluoxetine. Exploratory behavior in the open field test was not affected by fluoxetine treatment, but anxiety levels in the elevated plus maze test were increased in both adolescent and adult fluoxetine treated rats. Finally, in the amygdala, but not the dorsal raphe nucleus and medial prefrontal cortex, the number of PSA-NCAM (marker for synaptic remodeling) immunoreactive neurons was increased in adolescent rats, and decreased in adult rats, as a consequence of chronic fluoxetine treatment. No fluoxetine-induced changes in 5-HT1A receptor immunoreactivity were observed. In conclusion, we show that fluoxetine exerts both harmful and beneficial age-dependent effects on depressive behavior, body weight and wakefulness, which may relate, in part, to differential fluoxetine-induced neuroplasticity in the amygdala

    The many different faces of major depression: it is time for personalized medicine

    No full text
    First line antidepressants are the so-called SSRIs (selective serotonin reuptake inhibitors), e.g. fluvoxamine, fluoxetine, sertraline, paroxetine and escitalopram. Unfortunately, these drugs mostly do not provide full symptom relief and have a slow onset of action. Therefore other antidepressants are also being prescribed that inhibit the reuptake of norepinephrine (e.g. reboxetine, desipramine) or the reuptake of both serotonin (5-HT) and norepinephrine (e.g. venlafaxine, duloxetine, milnacipran). Nevertheless, many patients encounter residual symptoms such as impaired pleasure, impaired motivation, and lack of energy. It is hypothesized that an impaired brain reward system may underlie these residual symptoms. In agreement, there is some evidence that reuptake inhibitors of both norepinephrine and dopamine (e.g. methylphenidate, bupropion, nomifensine) affect these residual symptoms. In the pipeline are new drugs that block all three monoamine transporters for the reuptake of 5-HT, norepinephrine and dopamine, the so-called triple reuptake inhibitors (TRI). The working mechanisms of the above-mentioned antidepressants are discussed, and it is speculated whether depressed patients with different symptoms, sometimes even opposite ones due to atypical or melancholic features, can be matched with the different drug treatments available. In other words, is personalized medicine for major depression an option in the near future

    Bacterial Lipopolysaccharide Increases Serotonin Metabolism in Both Medial Prefrontal Cortex and Nucleus Accumbens in Male Wild Type Rats, but Not in Serotonin Transporter Knockout Rats

    No full text
    It is well known that bacterial lipopolysaccharides (LPS) both increases proinflammatory cytokines and produces sickness behavior, including fatigue and anhedonia (i.e., the inability to experience pleasure). Previously, we have shown that intraperitoneally (i.p.) administered LPS increased extracellular monoamine metabolite levels in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), which was completely, or at least partly, prevented by pretreatment with a triple reuptake inhibitor that also blocks the serotonin (5-HT) transporter (SERT). This suggests indirectly, that LPS may enhance SERT transporter activity, and consequently, increase removal of 5-HT from the synaptic cleft, and increase metabolism of 5-HT. In the present study, we focus more specifically on the role of SERT in this increased metabolism by using rats, that differ in SERT expression. Therefore, the effects of an intraperitoneal LPS injection on extracellular concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were investigated by in vivo microdialysis in the NAc and mPFC of wild type (SERT+/+), heterozygous (SERT+/−) and knockout (SERT−/−) rats. Here, we show that LPS-induced 5-HIAA formation in male rats, is significantly increased in SERT+/+ rats in both the NAc and mPFC, whereas this increase is partly or totally abolished in SERT+/− and SERT−/− rats, respectively. Thus, the present study supports the hypothesis that systemic LPS in male rats increases SERT function and consequently enhances 5-HT uptake and metabolism in both the NAc and mPFC

    Relations between peripheral and brain serotonin measures and behavioural responses in a novelty test in pigs

    No full text
    Pigs differ in their behavioural responses towards environmental challenges. Individual variation in maladaptive responses such as tail biting, may partly originate from underlying biological characteristics related to (emotional) reactivity to challenges and serotonergic system functioning. Assessing relations between behavioural responses and brain and blood serotonin parameters may help in understanding susceptibility to the development of maladaptive responses. The objective of the current study was, therefore, to assess the relationship between the pigs' serotonergic parameters measured in both blood and brain, and the behaviour of pigs during a novelty test.Pigs (n = 31) were subjected to a novelty test at 11. weeks of age, consisting of 5-min novel environment exposure after which a novel object (a bucket) was introduced for 5. min. Whole blood serotonin, platelet serotonin level, and platelet serotonin uptake were determined at 13. weeks of age. Levels of serotonin, its metabolite and serotonin turnover were determined at 19. weeks of age in the frontal cortex, hypothalamus and hippocampus.The behaviour of the pigs was different during exposure to a novel object compared to the novel environment only, with more fear-related behaviours exhibited during novel object exposure. Platelet serotonin level and brain serotonergic parameters in the hippocampus were interrelated. Notably, the time spent exploring the test arena was significantly correlated with both platelet serotonin level and right hippocampal serotonin activity (turnover and concentration). In conclusion, the existence of an underlying biological trait - possibly fearfulness - may be involved in the pig's behavioural responses toward environmental challenges, and this is also reflected in serotonergic parameters. © 2013 Elsevier Inc

    The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and "waiting" impulsivity, but increases "stopping" impulsivity

    Get PDF
    The 5-HT1A/1B-receptor agonist eltoprazine has a behavioral drug signature that resembles that of a variety of psychostimulant drugs, despite the differences in receptor binding profile. These psychostimulants are effective in treating impulsivity disorders, most likely because they increase norepinephrine (NE) and dopamine (DA) levels in the prefrontal cortex. Both amphetamine and methylphenidate, however, also increase dopamine levels in the nucleus accumbens (NAc), which has a significant role in motivation, pleasure, and reward. How eltoprazine affects monoamine release in the medial prefrontal cortex (mPFC), the orbitofrontal cortex (OFC), and the NAc is unknown. It is also unknown whether eltoprazine affects different forms of impulsivity and brain reward mechanisms. Therefore, in the present study, we investigate the effects of eltoprazine in rats in the following sequence: 1) the activity of the monoaminergic systems using in vivo microdialysis, 2) motivation for reward measured using the intracranial self-stimulation (ICSS) procedure, and finally, 3) "waiting" impulsivity in the delay-aversion task, and the "stopping" impulsivity in the stop-signal task. The microdialysis studies clearly showed that eltoprazine increased DA and NE release in both the mPFC and OFC, but only increased DA concentration in the NAc. In contrast, eltoprazine decreased 5-HT release in the mPFC and NAc (undetectable in the OFC). Remarkably, eltoprazine decreased impulsive choice, but increased impulsive action. Furthermore, brain stimulation was less rewarding following eltoprazine treatment. These results further support the long-standing hypothesis that "waiting" and "stopping" impulsivity are regulated by distinct neural circuits, because 5-HT1A/1B-receptor activation decreases impulsive choice, but increases impulsive action

    Autistic-like behavioural and neurochemical changes in a mouse model of food allergy

    No full text
    Food allergy has been suggested to contribute to the expression of psychological and psychiatric traits, including disturbed social behaviour and repetitive behaviour inherent in autism spectrum disorders (ASD). Most research in this field receives little attention, since fundamental evidence showing direct effects of food allergic immune responses on social behaviour is very limited. In the present study, we show that a food allergic reaction to cow's milk protein, induced shortly after weaning, reduced social behaviour and increased repetitive behaviour in mice. This food allergic reaction increased levels of serotonin (5-hydroxytryptamine; 5-HT) and the number of 5-HT positive cells, and decreased levels of 5-hydroxyindoleacetic acid (5-HIAA) in the intestine. Behavioural changes in food allergic mice were accompanied by reduced dopaminergic activity in the prefrontal cortex. Furthermore, neuronal activation (c-Fos expression) was increased in the prefrontal cortex and reduced in the paraventricular nucleus of the hypothalamus after exposure to a social target. We hypothesize that an intestinal allergic response regulates complex, but critical, neuroimmune interactions, thereby affecting brain circuits involved in social interaction, repetitive behaviour and cognition. Together with a genetic predisposition and multiple environmental factors, these effects of allergic immune activation may exacerbate behavioural abnormalities in patients with ASD

    Urine methanol concentration and alcohol hangover severity

    Get PDF
    BACKGROUND: Congeners are substances, other than ethanol, that are produced during fermentation. Previous research found that the consumption of congener-rich drinks contributes to the severity of alcohol hangover. Methanol is such a congener that has been related to alcohol hangover. Therefore, the aim of this study was to examine the relationship between urine methanol concentration and alcohol hangover severity. METHODS: N = 36 healthy social drinkers (22 females, 14 males), aged 18-30 years old, participated in a naturalistic study, comprising a hangover day and a control day (no alcohol consumed the previous day). N = 18 of them had regular hangovers (the hangover group), while the other N = 18 claimed to be hangover-immune (hangover-immune group). Overall hangover severity was assessed, and that of 23 individual hangover symptoms. Urine methanol concentrations on the hangover and control days were compared, and correlated to hangover (symptom) severity. RESULTS: Urine methanol concentration was significantly higher on hangover days compared to control days (p = 0.0001). No significant differences in urine methanol concentration were found between the hangover group and hangover-immune group. However, urine methanol concentration did not significantly correlate with overall hangover severity (r = -0.011, p = 0.948), nor with any of the individual hangover symptoms. These findings were observed also when analyzing the data separately for the hangover-immune group. In the hangover group, a significant correlation with urine methanol concentration was found only with vomiting (r = 0.489, p = 0.037). CONCLUSION: No significant correlation was observed between urine methanol concentration and hangover severity, nor with individual core hangover symptoms
    corecore