56 research outputs found

    Electron structure and electron–phonon interaction in the strongly correlated electron system of cuprates

    No full text
    The generalized tight-binding method presents a practical realization of the scheme that describes quasiparticles in strongly correlated electron system and consists of exact intra-cell diagonalization of the model Hamiltonian and perturbative treatment of the inter-cell hoppings. In present paper this method and its ab initio modification applied to undoped and weakly doped HTSC cuprates. Results are in very good agreement with the experimental ARPES data on various compounds. Starting with multiband p—d model the realistic effective low-energy Hamiltonian of strongly correlated electrons interacting with spin fluctuations and phonons is derived both for hole and electron doped systems. Without electron—phonon interaction the pure magnetic mechanism of pairing does not provide the correct value of Tc even for single-layer La₂₋xSrxCuO₄ and Nd₂₋xCexCuO₄

    Effect of oxygen content on magnetization and magnetoresistance properties of CMR manganites

    No full text
    The influence of oxygen content on the magnetization and electrical resistivity of Ln₀.₅A₀.₅MnO₃ (Ln=La,Pr,Nd; A=Ca,Ba) manganites with the perovskite structure is investigated. It is shown that the La₀.₅Ca₀.₅MnO₃₋γ compound undergoes a sequence of transitions from an antiferromagnetic (γ=0) to a spin-glass (γ=0.17) state and then to an inhomogeneous ferromagnetic (γ=0.3) state. A transition from an antiferromagnetic charge-ordered state to a ferromagnetic charge-disordered state in Nd₀.₅Ca₀.₅ MnO₃₋γ is observed as the oxygen content is reduced to where γ=0.07. The Nd₀.₅Ba₀.₅ MnO₃₋γcompound shows an increase of the Curie point from 110 K (γ=0) up to 310 K (γ=0.3). In addition, a large magnetoresistance is revealed which develops below their Curie temperature despite the absence of Mn³⁺√Mn⁴⁺ pairs. A Zener double-exchange interaction is usually used in literature to explain the magnetic and electrical properties of hole-doped perovskite manganites. The data obtained support the mechanism of superexchange interactions between magnetic moments of the manganese ions via oxygen

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990�2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk�outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk�outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk�outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51�12·1) deaths (19·2% 16·9�21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12�9·31) deaths (15·4% 14·6�16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253�350) DALYs (11·6% 10·3�13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0�9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10�24 years, alcohol use for those aged 25�49 years, and high systolic blood pressure for those aged 50�74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Stimulation of the lateral hypothalamus provokes the initiation of robust long-term potentiation of the thalamo-cortical input to the barrel field of the adult, freely moving rat.

    No full text
    Long-term potentiation in the thalamo-cortical input to the somatosensory cortex barrel field has been reported to be inducible in vitro only during a narrow critical period of the first postnatal week. Here we explored whether this is due to inability of adult synapses to express LTP or lack of appropriate conditions for LTP induction in slice preparations. We recorded thalamo-cortical field potentials (FPs) from the barrel field of chronically prepared adult rats. In the first series, several parameters of conditioning tetanization of thalamus (T) have been tried. Statistically significant LTP of 135-150% relative to the baseline was observed only in rare cases (3/18) so that the mean changes were not statistically significant. In the second series, five trains of 100 Hz stimulation of T were paired with a "reinforcing" stimulation of the lateral hypothalamus (LH). In most cases (9/13), thalamo-cortical FPs were potentiated. The mean post-tetanic amplitude was 238 +/- 42% (+/- SEM) relative to the baseline (n = 13). The potentiation persisted for >1 h and typically even further increased when tested 24-48 h later. LTP magnitude strongly correlated with the initial paired-pulse ratio (PPR, coefficient of correlation r = 0.98) so that the LTP magnitude was larger (333 +/- 107, n = 6) in cases with PPR > 1.3. The mean PPR tended to decrease after LTP (from 2.05 to 1.65). Altogether the results suggest that LTP is inducible in the thalamo-cortical input to the barrel field of normal adult rats. The dependence of the LTP magnitude upon the initial PPR suggests that inputs with low initial release probability undergo larger LTP. Together with the tendency to a decrease in the PPR this suggests an involvement of presynaptic mechanisms in the maintenance of neocortical LTP

    Application of numerical procedures for assessment of tanker wave loads including sloshing and ship speed

    No full text
    Object and purpose of research. The investigation considers approaches for inclusion of sloshing and ship speed and discusses their influence on estimation of hull responses to external loads. Materials and methods. The 3D panel method is used to solve a hydrodynamic problem of potential flow around ship hull in regular waves. The sloshing is included by direct modeling of inner tanks also containing potential fluid. The ship speed is taken into account by additional potential of inflow. Main results. Analysis of response amplitude operators (RAO) and bending moments with and without additional factors introduced in the mechanical model. Conclusion. The problem of ship motions in regular waves taking into account sloshing and ship speed was solved in the work process. The influence on responses of the considered mechanical system for taking these factors into considerations is analysed. The applied panel method shows flexibility regarding additional factors of modeling and offers a prospect for further investigation of non-linear effects associated with ship motions in waves

    ДИАГНОСТИЧЕСКИЕ КЛИНИКО-ЛУЧЕВЫЕ ПРИЗНАКИ ГИГАНТОКЛЕТОЧНОЙ ОПУХОЛИ, КОСТНОЙ КИСТЫ И ОСТЕОСАРКОМЫ

    No full text
    The problems of timeliness and correctness of diagnostics of bone tumours, as well as therapeutic decision deserve the most careful consideration. The present research concerns the detection of criteria of differential diagnostics of giant-cell tumours, osteocystoma and osteosarcoma (according to the literary data). According to the literature the study of clinical and radiologic diagnostics, allowed to work out differential and diagnostic tables of signs and algorithms of diagnostics of giant-cell tumours, osteocystoma and osteosarcoma. It enabled to detect a therapeutic and diagnostic approach to patients with bone tumours.Вопросы своевременности и правильности диагностики костных опухолей, а также выбора тактики лечения заслуживают самого серьёзного внимания. Выявлены критерии дифференциальной диагностики гигантоклеточной опухоли, костной кисты и остеосаркомы но собственным и литературным данным. На их основе разработаны дифференциально-диагностические таблицы признаков этих видов опухолей, позволяющие определить тактику диагностики и лечения больных
    corecore