95 research outputs found
Strict Forest Reserve Research in the Margin of the Carpathians, the Vár-hegy Case-Study
Sixteen forest reserves are situated in the northern part of Hungary which belongs to the Carpathian region according to EURAC delimitation (Ruffini et al. 2006). These Hungarian forest reserves expand the natural forest remnant/forest reserve net of the Carpathians towards the lower hilly region, representing the deciduous beech and oak forest belts near their lower (xeric) distribution limits. This paper outlines the Hungarian forest reserves belonging to the Carpathian region and the preliminary results of current projects in the Vár-hegy Forest Reserve (Bükk Mts., Hungary) as a case study. The alteration of tree species composition was investigated here based on the reconstruction of forest history in the previous 130 years (management period) and analyses of forest stand inventory. In another project CO2 sequestration changes of these forest stands were modeled since the clear-cutting in the 1880th and carbon stored in the forest ecosystem compartments was estimated. Our results show that the forest reserve stands are presently in a transition state from the managed forest towards a more natural mixed forest with several age-classes
The Predictive Value of Early-Life Trauma, Psychopathy, and the Testosterone-Cortisol Ratio for Impulsive Aggression Problems in Veterans
Background: In this study, we examined whether early-life trauma, psychopathy, and the testosterone/cortisol ratio predicted impulsive aggression problems in veterans. Method: A sample of 49 male veterans with impulsive aggression problems and 51 nonaggressive veterans were included in the study. Logistic regression analysis was performed with early-life trauma, primary and secondary psychopathy, and testosterone/cortisol ratio as continuous predictor variables; impulsive aggression status was entered as a binary outcome measure. Correlation analyses were conducted to examine pairwise relations among the predictors. Results: Results indicated that early-life trauma and secondary psychopathy, but not the testosterone/cortisol ratio or primary psychopathy, were significant predictors of impulsive aggression status. Conclusions: The current results indicate that early-life trauma and secondary psychopathy are risk factors for impulsive aggression problems among veterans. Future studies are needed to determine the exact causal relations among the variables examined here
Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase
Objective: Leptin is a cytokine produced by adipose tissue that acts mainly on the hypothalamus to regulate appetite and energy homeostasis. Previous studies revealed that the leptin receptor is expressed not only in neurons, but also in glial cells. Microglia are resident immune cells in the brain that play an essential role in immune defense and neural network development. Previously we reported that microglial morphology and cytokine production are changed in the leptin receptor deficient db/db mouse, suggesting that leptin's central effects on metabolic control might involve signaling through microglia. In the current study, we aimed to uncover the role of leptin signaling in microglia in systemic metabolic control. Methods: We generated a mouse model with leptin receptor deficiency, specifically in the myeloid cells, to determine the role of microglial leptin signaling in the development of metabolic disease and to investigate microglial functions. Results: We discovered that these mice have increased body weight with hyperphagia. In the hypothalamus, pro-opiomelanocortin neuron numbers in the arcuate nucleus (ARC) and alpha-MSH projections from the ARC to the paraventricular nucleus (PVN) decreased, which was accompanied by the presence of less ramified microglia with impaired phagocytic capacity in the PVN. Conclusions: Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism
Exact and approximate nonlinear waves generated by the periodic superposition of solitons
Toda [1], Boyd [2], Zaitsev [3], Korpel & Banerjee [4], and Whitham [5] have proved that many species of solitons may be cloned and superposed with even spacing to generate exact nonlinear, spatially periodic solutions (“cnoidal waves”). The equations solved by such “imbricate” series of solitary waves include the Korteweg-deVries, Cubic Schroedinger, Benjamin-Ono, and resonant triad equations. However, all existing theorems apply only when the solitons are rational or meromorphic functions and the cnoidal waves are elliptic functions. In this note, we ask: does the exact soliton-superposition apply to non-elliptic solitons and cnoidal waves?Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43442/1/33_2004_Article_BF00945815.pd
All-linear time reversal by a dynamic artificial crystal
The time reversal of pulsed signals or propagating wave packets has long been recognized to have profound scientific and technological significance. Until now, all experimentally verified time-reversal mechanisms have been reliant upon nonlinear phenomena such as four-wave mixing. In this paper, we report the experimental realization of all-linear time reversal. The time-reversal mechanism we propose is based on the dynamic control of an artificial crystal structure, and is demonstrated in a spin-wave system using a dynamic magnonic crystal. The crystal is switched from an homogeneous state to one in which its properties vary with spatial period a, while a propagating wave packet is inside. As a result, a linear coupling between wave components with wave vectors k≈π/a and k′=k−2ππ/a≈−π/a is produced, which leads to spectral inversion, and thus to the formation of a time-reversed wave packet. The reversal mechanism is entirely general and so applicable to artificial crystal systems of any physical nature
- …