31 research outputs found

    Spatially explicit assessment of roundwood and logging residues availability and costs for the EU28

    Get PDF
    Competition for woody biomass between material and energy uses is expected to further increase in the future, due to the limited availability of forest resources and increasing demand of wood for material and bioenergy. Currently, methodological approaches for modeling wood production and delivery costs from forest to industrial gates are missing. This study combines forest engineering, geographically explicit information, environmental constraints and economics in a bottom-up approach to assess cost–supply curves. The estimates are based on a multitude of wood supply systems that were assigned according to geographically explicit forestry characteristics. For each harvesting and transportation system, efficiencies were modeled according to harvesting sites and main delivery hubs. The cost–supply curves for roundwood and logging residues as estimates for current time and for the future (2030) show that there are large regional differences in the potential to increase extraction in the EU28. In most EU Member States, the costs of logging residues extraction increase exponentially already for low levels of mobilization, while extraction of roundwood can be increased to a larger extent within reasonable costs (30–40 $/m3). The large differences between countries in their harvest potential highlight the importance of spatially explicit analyses

    Combining Spatiotemporal Corridor Design for Reindeer Migration with Harvest Scheduling in Northern Sweden

    Get PDF
    Reindeer husbandry and commercial forestry seek to co-exist in the forests of Northern Sweden. As interwoven as the two industries are, conflicts have arisen. Forest practices have reduced the distribution of lichen, the main winter diet for reindeer. Forest practices have also increased forest density, compromising the animals’ ability to pass through forested areas on their migration routes. In an attempt to reduce impacts on reindeer husbandry, we present a spatially explicit harvest scheduling model that includes reindeer corridors with user-defined spatial characteristics. We illustrate the model in a case study and explore the relationship between timber revenues and the selection and maintenance of reindeer corridors. The corridors are not only to include sufficient lichen habitat, but they are also supposed to ensure access for reindeer by connecting lichen areas with linkages that allow unobstructed travel. Since harvest scheduling occurs over a planning horizon, the spatial configuration of corridors can change from one time period to the next in order to accommodate harvesting activities. Our results suggest that maintaining reindeer corridors in harvest scheduling can be done at minimal cost. Also, we conclude that including corridor constraints in the harvest scheduling model is critical to guarantee connectivity of reindeer pastures

    Combining Climate Change Mitigation Scenarios with Current Forest Owner Behavior: A Scenario Study from a Region in Southern Sweden

    Get PDF
    This study investigates the need for change of current forest management approaches in a southern Swedish region within the context of future climate change mitigation through empirically derived projections, rather than forest management according to silvicultural guidelines. Scenarios indicate that climate change mitigation will increase global wood demand. This might call for adjustments of well-established management approaches. This study investigates to what extent increasing wood demands in three climate change mitigation scenarios can be satisfied with current forest management approaches of different intensities in a southern Swedish region. Forest management practices in Kronoberg County were mapped through interviews, statistics, and desk research and were translated into five different management strategies with different intensities regulating management at the property level. The consequences of current practices, as well as their intensification, were analyzed with the Heureka Planwise forest planning system in combination with a specially developed forest owner decision simulator. Projections were done over a 100-year period under three climate change mitigation scenarios developed with the Global Biosphere Management Model (GLOBIUM). Current management practices could meet scenario demands during the first 20 years. This was followed by a shortage of wood during two periods in all scenarios unless rotations were reduced. In a longer timeframe, the wood demands were projected to be easily satisfied in the less ambitious climate change mitigation scenarios. In contrast, the demand in the ambitious mitigation scenario could not be met with current management practices, not even if all owners managed their production forests at the intensive extreme of current management approaches. The climate change mitigation scenarios provide very different trajectories with respect to future drivers of forest management. Our results indicate that with less ambitious mitigation efforts, the relatively intensive practices in the study region can be softened while ambitious mitigation might push for further intensification

    The Effect of Alternative Forest Management Models on the Forest Harvest and Emissions as Compared to the Forest Reference Level

    Get PDF
    Background and Objectives: Under the Paris Agreement, the European Union (EU) sets rules for accounting the greenhouse gas emissions and removals from forest land (FL). According to these rules, the average FL emissions of each member state in 2021–2025 (compliance period 1, CP1) and in 2026–2030 (compliance period 2, CP2) will be compared to a projected forest reference level (FRL). The FRL is estimated by modelling forest development under fixed forest management practices, based on those observed in 2000–2009. In this context, the objective of this study was to estimate the effects of large-scale uptake of alternative forest management models (aFMMs), developed in the ALTERFOR project (Alternative models and robust decision-making for future forest management), on forest harvest and forest carbon sink, considering that the proposed aFMMs are expanded to most of the suitable areas in EU27+UK and Turkey. Methods: We applied the Global Forest Model (G4M) for projecting the harvest and sink with the aFMMs and compared our results to previous FRL projections. The simulations were performed under the condition that the countries should match the harvest levels estimated for their FRLs as closely as possible. A representation of such aFMMs as clearcut, selective logging, shelterwood logging and tree species change was included in G4M. The aFMMs were modeled under four scenarios of spatial allocation and two scenarios of uptake rate. Finally, we compared our results to the business as usual. Results: The introduction of the aFMMs enhanced the forest sink in CP1 and CP2 in all studied regions when compared to the business as usual. Conclusions: Our results suggest that if a balanced mixture of aFMMs is chosen, a similar level of wood harvest can be maintained as in the FRL projection, while at the same time enhancing the forest sink. In particular, a mixture of multifunctional aFMMs, like selective logging and shelterwood, could enhance the carbon sink by up to 21% over the ALTERFOR region while limiting harvest leakages

    Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union

    Get PDF
    In this study, the potential global loss of species directly associated with land use in the EU and due to trade with other regions is computed over time, in order to reveal differences in impacts between the considered alternatives of plausible bioenergy policies development in the EU. The spatially explicit study combines a life cycle analysis (LCA) for biodiversity impact assessment with a global high resolution economic land use model. Both impacts of domestic land use and impacts through imports were included for estimating the biodiversity footprint of the member states of the (EU28). The analyzed scenarios assumed similar biomass demand until 2020 but differed thereafter, from keeping the growth of demand for bioenergy constant (CONST), to a strong increase of bioenergy in line with the EU target of decreasing greenhouse gas (GHG) emissions by 80% by 2050 (EMIRED) and with the baseline (BASE) scenario falling between the other two. As a general trend, the increasing demand for biomass was found to have substantial impact on biodiversity in all scenarios, while the differences between the scenarios were found to be modest. The share caused by imports was 15% of the overall biodiversity impacts detected in this study in the year 2000, and progressively increased to 24% to 26% in 2050, depending on the scenario. The most prominent future change in domestic land use in all scenarios was the expansion of perennial cultivations for energy. In the EMIRED scenario, there is a larger expansion of perennial cultivations and a smaller expansion of cropland in the EU than in the other two scenarios. As the biodiversity damage is smaller for land used for perennial cultivations than for cropland, this development decreases the internal biodiversity damage per unit of land. At the same time, however, the EMIRED scenario also features the largest outsourcing of damage, due to increased import of cropland products from outside the EU for satisfying the EU food demand. These two opposite effects even out each other, resulting in the total biodiversity damage for the EMIRED scenario being only slightly higher than the other two scenarios. The results of this study indicate that increasing cultivation of perennials for bioenergy and the consequent decrease in the availability of cropland for food production in the EU may lead to outsourcing of agricultural products supply to other regions. This development is associated with a leakage of biodiversity damages to species-rich and vulnerable regions outside the EU. In the case of a future increase in bioenergy demand, the combination of biomass supply from sustainable forest management in the EU, combined with imported wood pellets and cultivation of perennial energy crops, appears to be less detrimental to biodiversity than expansion of energy crops in the EU

    Impact of the 2 °C target on global woody biomass use

    Get PDF
    In this study we investigate the implications of reaching the 2 °C climate target for global woody biomass use by applying the Global Biosphere Management Model (GLOBIOM) and the recently published SSP-RCP scenario calculations. We show that the higher biomass demand for energy needed to reach the 2 °C target can be achieved without significant distortions to woody biomass material use and that it can even benefit certain forest industries and regions. This is because the higher woody biomass use for energy increases the demand for forest industry by-products, which makes forest industry final products production more profitable and compensates for the cost effect of increased competition over raw materials. The higher woody biomass use for energy is found to benefit sawnwood, plywood and chemical pulp production, which provide large amounts of by-products, and to inhibit fiberboard and mechanical pulp production, which provide small amounts of by-products. At the regional level, the higher woody biomass use for energy is found to benefit material production in regions, which use little roundwood for energy (Russia, North-America and EU28), and to inhibit material production in regions, which use large amounts of roundwood for energy (Asia, Africa and South-America). Even if the 2 °C target increases harvest volumes in the tropical regions significantly compared to the non-mitigation scenario, harvest volumes remain in these regions at a relatively low level compared to the harvest potential

    Global Woody Biomass Harvest Volumes and Forest Area Use Under Different SSP-RCP Scenarios

    Get PDF
    In this study, we investigate the effects of climate change mitigation and socioeconomic development on global forest resources use. The analysis is based on the Global Biosphere Management Model (GLOBIOM), which is a recursive dynamic land-use model. Climate change mitigation and socioeconomic development are included in the model as exogenous parameters taken from the SSP-RCP scenarios, which separate between the shared socioeconomic pathways(“SSPs”) and the representative concentration pathways (“RCPs”). The effect of SSP-RCP scenarios is restricted to factors that are quantitatively documented in the SSP database (economic growth, population growth, bioenergy demand, and carbon prices). Our results indicate that both climate change mitigation and socio-economic development may increase harvest volumes and harvested area considerably in the future. This happens because there are no opportunity costs of using forest area for harvesting in the model. We show that such opportunity costs can be added in the model by considering carbon storage changes between forest types and carbon payments on them. These payments increases woody biomass prices and make woody biomass harvesting for modern bioenergy less profitable mitigation option relative to carbon sequestration in the standing forests. However, the payments do not have much impact on the profitability of woody biomass harvesting for material products and traditional bioenergy. The reason is that energy crops provide a substitute for woody biomass use for modern bioenergy while there are less substitutes available for woody biomass use for material products and traditional bioenergy. Provided that carbon payments can be used as a policy instrument to control impacts of climate change mitigation on harvest volumes and harvested area, an unfavorable future socioeconomic development may cause a greater threat to the world’s forests than climate change mitigation

    Impact of modelling choices on setting the reference levels for the EU forest carbon sinks: how do different assumptions affect the country-specific forest reference levels?

    Get PDF
    Background In 2018, the European Union (EU) adopted Regulation 2018/841, which sets the accounting rules for the land use, land use change and forestry (LULUCF) sector for the period 2021–2030. This regulation is part of the EU’s commitments to comply with the Paris Agreement. According to the new regulation, emissions and removals for managed forest land are to be accounted against a projected forest reference level (FRL) that is estimated by each EU Member State based on the continuation of forest management practices of the reference period 2000–2009. The aim of this study is to assess how different modelling assumptions possible under the regulation may influence the FRL estimates. Applying the interlinked G4M and WoodCarbonMonitor modelling frameworks, we estimate potential FRLs for each individual EU Member State following a set of conceptual scenarios, each reflecting different modelling assumptions that are consistent with the regulation and the technical guidance document published by the European Commission. Results The simulations of the conceptual scenarios show that differences in the underlying modelling assumptions may have a large impact on the projected FRL. Depending on the assumptions taken, the projected annual carbon sink on managed forest land in the EU varies from −319 MtCO2 to −397 MtCO2 during the first compliance period (2021–2025) and from −296 MtCO2 to −376 MtCO2 during the second compliance period (i.e. 2026–2030). These estimates can be compared with the 2017 national GHG inventories which estimated that the forest carbon sink for managed forest land was −373 MtCO2 in 2015. On an aggregated EU level, the assumptions related to climate change and the allocation of forest management practices have the largest impacts on the FRL estimates. On the other hand, assumptions concerning the starting year of the projection, stratification of managed forest land, and timing of individual management activities are found to have relatively small impacts on the FRL estimates. Conclusions We provide a first assessment of the level of uncertainty associated with the different assumptions discussed in the technical guidance document and the LULUCF regulation, and the impact of these assumptions on the country-specific FRL. The results highlight the importance of transparent documentation by the EU Member States on how their FRL has been calculated, and on the underlying assumptions. Backgroun
    corecore