5 research outputs found

    Direct comparison between apparent diffusion coefficient and macromolecular proton fraction as quantitative biomarkers of the human fetal brain maturation

    No full text
    BACKGROUND: Apparent diffusion coefficient (ADC) is known as a quantitative biomarker of prenatal brain maturation. Fast macromolecular proton fraction (MPF) mapping is an emerging method for quantitative assessment of myelination that was recently adapted to fetal MRI.PURPOSE:To compare the capability of ADC and MPF to quantify the normal fetal brain development.STUDY TYPE:Prospective.POPULATION:Forty-two human fetuses in utero (gestational age [GA] = 27.7 ± 6.0, range 20-38 weeks).FIELD STRENGTH/SEQUENCE: 1.5 T; diffusion-weighted single-shot echo-planar spin-echo with five b-values for ADC mapping; spoiled multishot echo-planar gradient-echo with T1 , proton density, and magnetization transfer contrast weightings for single-point MPF mapping. ASSESSMENT: Two operators measured ADC and MPF in the medulla, pons, cerebellum, thalamus, and frontal, occipital, and temporal cerebral white matter (WM). STATISTICAL TESTS: Mixed repeated-measures analysis of variance (ANOVA) with the factors of pregnancy trimester and brain structure; Pearson correlation coefficient (r); Hotelling-Williams test to compare strengths of correlations. RESULTS: From the 2nd to 3rd trimester, ADC significantly decreased in the thalamus and cerebellum (P < 0.005). MPF significantly increased in the medulla, pons, thalamus, and cerebellum (P < 0.005). Cerebral WM had significantly higher ADC and lower MPF compared with the medulla and pons in both trimesters. MPF (r range 0.83, 0.89, P < 0.001) and ADC (r range -0.43, -0.75, P ≤ 0.004) significantly correlated with GA and each other (r range -0.32, -0.60, P ≤ 0.04) in the medulla, pons, thalamus, and cerebellum. No significant correlations or distinctions between regions and trimesters were observed for cerebral WM (P range 0.1-0.75). Correlations with GA were significantly stronger for MPF compared with ADC in the medulla, pons, and cerebellum (Hotelling-Williams test, P < 0.003) and similar in the thalamus. Structure-averaged MPF and ADC values strongly correlated (r = 0

    Quantitative assessment of normal fetal brain myelination using fast macromolecular proton fraction mapping

    No full text
    BACKGROUND AND PURPOSE:Fast macromolecular proton fraction mapping is a recently emerged MRI method for quantitative myelin imaging. Our aim was to develop a clinically targeted technique for macromolecular proton fraction mapping of the fetal brain and test its capability to characterize normal prenatal myelination.MATERIALS AND METHODS:This prospective study included 41 pregnant women (gestational age range, 18-38 weeks) without abnormal findings on fetal brain MR imaging performed for clinical indications. A fast fetal brain macromolecular proton fraction mapping protocol was implemented on a clinical 1.5T MR imaging scanner without software modifications and was performed after a clinical examination with an additional scan time of <5 minutes. 3D macromolecular proton fraction maps were reconstructed from magnetization transfer-weighted, T1-weighted, and proton density-weighted images by the single-point method. Mean macromolecular proton fraction in the brain stem, cerebellum, and thalamus and frontal, temporal, and occipital WM was compared between structures and pregnancy trimesters using analysis of variance. Gestational age dependence of the macromolecular proton fraction was assessed using the Pearson correlation coefficient (r).RESULTS:The mean macromolecular proton fraction in the fetal brain structures varied between 2.3% and 4.3%, being 5-fold lower than macromolecular proton fraction in adult WM. The macromolecular proton fraction in the third trimester was higher compared with the second trimester in the brain stem, cerebellum, and thalamus. The highest macromolecular proton fraction was observed in the brain stem, followed by the thalamus, cerebellum, and cerebral WM. The macromolecular proton fraction in the brain stem, cerebellum, and thalamus strongly correlated with gestational age (r = 0.88, 0.80, and 0.73; P < .001). No significant correlations were found for cerebral WM regions.CONCLUSIONS:Myelin is the main factor determining macromolecular proton fraction in brain tissues. Macromolecular proton fraction mapping is sensitive to the earliest stages of the fetal brain myelination and can be implemented in a clinical setting

    Quantitative assessment of normal fetal brain myelination using fast macromolecular proton fraction mapping

    No full text
    BACKGROUND AND PURPOSE:Fast macromolecular proton fraction mapping is a recently emerged MRI method for quantitative myelin imaging. Our aim was to develop a clinically targeted technique for macromolecular proton fraction mapping of the fetal brain and test its capability to characterize normal prenatal myelination.MATERIALS AND METHODS:This prospective study included 41 pregnant women (gestational age range, 18-38 weeks) without abnormal findings on fetal brain MR imaging performed for clinical indications. A fast fetal brain macromolecular proton fraction mapping protocol was implemented on a clinical 1.5T MR imaging scanner without software modifications and was performed after a clinical examination with an additional scan time of <5 minutes. 3D macromolecular proton fraction maps were reconstructed from magnetization transfer-weighted, T1-weighted, and proton density-weighted images by the single-point method. Mean macromolecular proton fraction in the brain stem, cerebellum, and thalamus and frontal, temporal, and occipital WM was compared between structures and pregnancy trimesters using analysis of variance. Gestational age dependence of the macromolecular proton fraction was assessed using the Pearson correlation coefficient (r).RESULTS:The mean macromolecular proton fraction in the fetal brain structures varied between 2.3% and 4.3%, being 5-fold lower than macromolecular proton fraction in adult WM. The macromolecular proton fraction in the third trimester was higher compared with the second trimester in the brain stem, cerebellum, and thalamus. The highest macromolecular proton fraction was observed in the brain stem, followed by the thalamus, cerebellum, and cerebral WM. The macromolecular proton fraction in the brain stem, cerebellum, and thalamus strongly correlated with gestational age (r = 0.88, 0.80, and 0.73; P < .001). No significant correlations were found for cerebral WM regions.CONCLUSIONS:Myelin is the main factor determining macromolecular proton fraction in brain tissues. Macromolecular proton fraction mapping is sensitive to the earliest stages of the fetal brain myelination and can be implemented in a clinical setting

    Congenital medulloblastoma: Fetal and postnatal longitudinal observation with quantitative MRI

    No full text
    Congenital medulloblastoma is extremely rare. MRI appearance of this tumor in the fetal brain has not been described. A case of congenital medulloblastoma initially observed by antenatal MRI with postnatal follow-up and treatment is presented. A pregnant female underwent fetal MRI on the 31st gestational week for routine indications. Midline cerebellar lesion of ≤2 cm in size with minor T2 hypointensity and T1 hyperintensity was identified. Additionally, quantitative MRI including apparent diffusion coefficient (ADC) and fast macromolecular proton fraction (MPF) mapping was performed. The lesion showed a marked ADC decrease and MPF increase. MPF maps depicted the lesion most conspicuously. After term delivery, a male neonate presented with symptoms of increased intracranial pressure. Postnatal MRI identified obstructive hydrocephalus caused by a large posterior fossa mass. The child was treated by cerebrospinal fluid shunt placement. Follow-up quantitative MRI on the fifth month revealed tumor growth and vivid changes of its tissue contrast associated with brain maturation. The tumor appeared nearly isointense on T1- and T2-weighted images and slightly hypointense on the ADC map. MPF contrast showed the most remarkable change from hyper- to hypointensity due to brain myelination with stable MPF in the tumor. Subsequently, the child underwent partial tumor resection, and currently continues treatment with chemotherapy. The pathological diagnosis was desmoplastic/nodular medulloblastoma. The described case illustrates evolution of the tumor contrast in the course of fetal and postnatal brain development and highlights the added diagnostic value of MPF mapping in fetal and neonatal neuroimaging

    Congenital medulloblastoma: Fetal and postnatal longitudinal observation with quantitative MRI

    No full text
    Congenital medulloblastoma is extremely rare. MRI appearance of this tumor in the fetal brain has not been described. A case of congenital medulloblastoma initially observed by antenatal MRI with postnatal follow-up and treatment is presented. A pregnant female underwent fetal MRI on the 31st gestational week for routine indications. Midline cerebellar lesion of ≤2 cm in size with minor T2 hypointensity and T1 hyperintensity was identified. Additionally, quantitative MRI including apparent diffusion coefficient (ADC) and fast macromolecular proton fraction (MPF) mapping was performed. The lesion showed a marked ADC decrease and MPF increase. MPF maps depicted the lesion most conspicuously. After term delivery, a male neonate presented with symptoms of increased intracranial pressure. Postnatal MRI identified obstructive hydrocephalus caused by a large posterior fossa mass. The child was treated by cerebrospinal fluid shunt placement. Follow-up quantitative MRI on the fifth month revealed tumor growth and vivid changes of its tissue contrast associated with brain maturation. The tumor appeared nearly isointense on T1- and T2-weighted images and slightly hypointense on the ADC map. MPF contrast showed the most remarkable change from hyper- to hypointensity due to brain myelination with stable MPF in the tumor. Subsequently, the child underwent partial tumor resection, and currently continues treatment with chemotherapy. The pathological diagnosis was desmoplastic/nodular medulloblastoma. The described case illustrates evolution of the tumor contrast in the course of fetal and postnatal brain development and highlights the added diagnostic value of MPF mapping in fetal and neonatal neuroimaging
    corecore