3,323 research outputs found

    Shock-wave heating mechanism of the distant solar wind: explanation of Voyager-2 data

    Full text link
    One of the important discoveries made by Voyager-2 is the nonadiabatic radial profile of the solar wind proton temperature. This phenomenon has been studied for several decades. The dissipation of turbulence energy has been proposed as the main physical process responsible for the temperature profile. The turbulence is both convected with the solar wind and originated in the solar wind by the compressions and shears in the flows and by pick-up ions. The compression source of the solar wind heating in the outer heliosphere appears due to shock waves, which originated either in the solar corona or in the solar wind itself. The goal of this work is to demonstrate that the shock-wave heating itself is enough to explain the temperature profile obtained by Voyager-2. The effect of shock-wave heating is demonstrated in the frame of a very simple spherically symmetric high-resolution (in both space and time) gas-dynamical data-driven solar wind model. This data-driven model employs the solar-wind parameters at 1 AU with minute resolution. The data are taken from the NASA OMNIWeb database. It is important to underline that (1) the model captures the shocks traveling and/or originating in the solar wind, and (2) other sources of heating are not taken into account in the model. We extended this simple model to the magnetohydrodynamic (MHD) and two-component models and found very similar results. The results of the numerical modeling with the one-minute OMNI data as the boundary condition show very good agreement with the solar-wind temperature profiles obtained by Voyager-2. It is also noteworthy that the numerical results with daily averaged OMNI data show a very similar temperature profile, while the numerical runs with 27-day-averaged OMNI data demonstrate the adiabatic behavior of the temperature.Comment: 12 pages, 7 figure

    A Massive Jet Ejection Event from the Microquasar SS 433 Accompanying Rapid X-Ray Variability

    Full text link
    Microquasars occasionally exhibit massive jet ejections which are distinct from the continuous or quasi-continuous weak jet ejections. Because those massive jet ejections are rare and short events, they have hardly been observed in X-ray so far. In this paper, the first X-ray observation of a massive jet ejection from the microquasar SS 433 with the Rossi X-ray Timing Explorer (RXTE) is reported. SS 433 undergoing a massive ejection event shows a variety of new phenomena including a QPO-like feature near 0.1 Hz, rapid time variability, and shot-like activities. The shot-like activity may be caused by the formation of a small plasma bullet. A massive jet may be consist of thousands of those plasma bullets ejected from the binary system. The size, mass, internal energy, and kinetic energy of the bullets and the massive jet are estimated.Comment: 21 pages including 5 figures, submitted to Ap

    Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays

    Get PDF
    Two-dimensional (2D) supramolecular arrays provide a route to the spatial control of the chemical functionality of a surface, but their deposition is in almost all cases limited to a monolayer termination. Here we investigated the sequential deposition of one 2D array on another to form a supramolecular heterostructure and realize the growth—normal to the underlying substrate—of distinct ordered layers, each of which is stabilized by in-plane hydrogen bonding. For heterostructures formed by depositing terephthalic acid or trimesic acid on cyanuric acid/melamine, we have determined, using atomic force microscopy under ambient conditions, a clear epitaxial arrangement despite the intrinsically distinct symmetries and/or lattice constants of each layer. Structures calculated using classical molecular dynamics are in excellent agreement with the orientation, registry and dimensions of the epitaxial layers. Calculations confirm that van der Waals interactions provide the dominant contribution to the adsorption energy and registry of the layers

    Determination of the Michel Parameters and the tau Neutrino Helicity in tau Decay

    Get PDF
    Using the CLEO II detector at the e+ee^+e^- storage ring CESR, we have determined the Michel parameters ρ\rho, ξ\xi, and δ\delta in τlννˉ\tau^\mp \to l^\mp\nu\bar{\nu} decay as well as the tau neutrino helicity parameter hντh_{\nu_\tau} in τππ0ν\tau^\mp \to \pi^\mp\pi^0\nu decay. From a data sample of 3.02×1063.02\times 10^6 tau pairs produced at s=10.6GeV\sqrt{s}=10.6 GeV, using events of the topology e+eτ+τ(l±ννˉ)(ππ0ν)e^+e^- \to \tau^+\tau^- \to (l^\pm\nu\bar{\nu}) (\pi^\mp\pi^0\nu) and e+eτ+τ(π±π0νˉ)(ππ0ν)e^+e^- \to \tau^+\tau^- \to (\pi^\pm\pi^0\bar{\nu}) (\pi^\mp\pi^0\nu), and the determined sign of hντh_{\nu_\tau}, the combined result of the three samples is: ρ=0.747±0.010±0.006\rho = 0.747\pm 0.010\pm 0.006, ξ=1.007±0.040±0.015\xi = 1.007\pm 0.040\pm 0.015, ξδ=0.745±0.026±0.009\xi\delta = 0.745\pm 0.026\pm 0.009, and hντ=0.995±0.010±0.003h_{\nu_\tau} = -0.995\pm 0.010\pm 0.003. The results are in agreement with the Standard Model V-A interaction.Comment: 18 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Search for the Decay τ4pi3π+(π0)ντ\tau^{-}\to 4pi^{-}3\pi^{+}(\pi^{0})\nu_{\tau}

    Full text link
    We have searched for the decay of the tau lepton into seven charged particles and zero or one pi0. The data used in the search were collected with the CLEO II detector at the Cornell Electron Storage Ring (CESR) and correspond to an integrated luminosity of 4.61 fb^(-1). No evidence for a signal is found. Assuming all the charged particles are pions, we set an upper limit on the branching fraction, B(tau- -> 4pi- 3pi+ (pi0) nu_tau) < 2.4 x 10^(-6) at the 90% confidence level. This limit represents a significant improvement over the previous limit.Comment: 9 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Observation of the Isospin-Violating Decay Ds+Ds+π0D_s^{*+}\to D_s^+\pi^0

    Full text link
    Using data collected with the CLEO~II detector, we have observed the isospin-violating decay Ds+Ds+π0D_s^{*+}\to D_s^+\pi^0. The decay rate for this mode, relative to the dominant radiative decay, is found to be Γ(Ds+Ds+π0)/Γ(Ds+Ds+γ)=0.0620.018+0.020±0.022\Gamma(D_s^{*+}\to D_s^+\pi^0)/\Gamma(D_s^{*+}\to D_s^+\gamma)= 0.062^{+0.020}_{-0.018}\pm0.022.Comment: 8 page uuencoded postscript file, also available through http://w4.lns.cornell.edu/public/CLN

    Limit on the Two-Photon Production of the Glueball Candidate fJ(2220)f_{J}(2220) at CLEO

    Full text link
    We use the CLEO detector at the Cornell electron-positron storage ring, CESR, to search for the two-photon production of the glueball candidate f_J(2220) in its decay to K_s K_s. We present a restrictive upper limit on the product of the two-photon partial width and the K_s K_s branching fraction. We use this limit to calculate a lower limit on the stickiness, which is a measure of the two-gluon coupling relative to the two-photon coupling. This limit on stickiness indicates that the f_J(2220) has substantial glueball content.Comment: 9 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Study of Gluon versus Quark Fragmentation in Υggγ\Upsilon\to gg\gamma and e+eqqˉγe^{+}e^{-}\to q\bar{q}\gamma Events at \sqrt{s}=10 GeV

    Full text link
    Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for jet-jet masses less than 7 GeV.Comment: 15 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Measurements of the Ratios B(Ds+η+ν)/B(Ds+ϕ+ν){\cal B}(D_s^+\to \eta\ell^+\nu)/{\cal B}(D_s^+\to \phi\ell^+\nu) and B(Ds+η+ν)/B(Ds+ϕ+ν){\cal B}(D_s^+\to \eta'\ell^+\nu)/{\cal B}(D_s^+\to \phi\ell^+\nu)

    Full text link
    Using the CLEO~II detector we measure B(Ds+ηe+ν)/B(Ds+ϕe+ν)=1.24±0.12±0.15{\cal B}(D_s^+\to \eta e^+\nu)/{\cal B}(D_s^+\to \phi e^+\nu) =1.24\pm0.12\pm0.15, B(Ds+ηe+ν)/B(Ds+ϕe+ν)=0.43±0.11±0.07{\cal B}(D_s^+\to \eta' e^+\nu)/{\cal B}(D_s^+\to \phi e^+\nu) =0.43\pm0.11\pm0.07 and B(Ds+ηe+ν)/B(Ds+ηe+ν)=0.35±0.09±0.07{\cal B}(D_s^+\to \eta' e^+\nu)/{\cal B}(D_s^+\to \eta e^+\nu) =0.35\pm0.09\pm0.07. We find the vector to pseudoscalar ratio, B(Ds+ϕe+ν)/B(Ds+(η+η)e+ν)=0.60±0.06±0.06{\cal B}(D_s^+\to \phi e^+\nu)/{\cal B}(D_s^+\to (\eta+\eta') e^+\nu) =0.60\pm0.06\pm0.06, which is similar to the ratio found in non strange DD decays.Comment: 11 page uuencoded postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN
    corecore