3 research outputs found

    Refining the Stellar Parameters of τ\tau Ceti: a Pole-on Solar Analog

    Full text link
    To accurately characterize the planets a star may be hosting, stellar parameters must first be well-determined. τ\tau Ceti is a nearby solar analog and often a target for exoplanet searches. Uncertainties in the observed rotational velocities have made constraining τ\tau Ceti's inclination difficult. For planet candidates from radial velocity (RV) observations, this leads to substantial uncertainties in the planetary masses, as only the minimum mass (msinim \sin i) can be constrained with RV. In this paper, we used new long-baseline optical interferometric data from the CHARA Array with the MIRC-X beam combiner and extreme precision spectroscopic data from the Lowell Discovery Telescope with EXPRES to improve constraints on the stellar parameters of τ\tau Ceti. Additional archival data were obtained from a Tennessee State University Automatic Photometric Telescope and the Mount Wilson Observatory HK project. These new and archival data sets led to improved stellar parameter determinations, including a limb-darkened angular diameter of 2.019±0.0122.019 \pm 0.012 mas and rotation period of 46±446 \pm 4 days. By combining parameters from our data sets, we obtained an estimate for the stellar inclination of 7±77\pm7^\circ. This nearly-pole-on orientation has implications for the previously-reported exoplanets. An analysis of the system dynamics suggests that the planetary architecture described by Feng et al. (2017) may not retain long-term stability for low orbital inclinations. Additionally, the inclination of τ\tau Ceti reveals a misalignment between the inclinations of the stellar rotation axis and the previously-measured debris disk rotation axis (idisk=35±10i_\mathrm{disk} = 35 \pm 10^\circ).Comment: 14 pages, 3 figures, 4 tables, 1 appendix, accepted for publication to A

    Silver nanostructures formation in porous Si/SiO2_2 matrix

    No full text
    Self-organized silver nanostructures were grown in porous Si/SiO2 matrix fabricated by ion track technology. The different silver nanostructures with shapes like “sunflowers”, “azalea” or “corn” were realized by applying wet-chemical electroless deposition. We show that reproducible self-organized silver “sunflower” like nanostructures provide a high enhanced Raman signal of Nile blue dye molecules. Signal enhancement for a few or even just a single silver “sunflower” is demonstrated by analyzing the surface-enhanced Raman signature of Nile blue dye molecules. According to this, the silver nanostructures can act as efficient surfaces for surface enhanced Raman spectroscopy as well as (bio)-sensor applications

    Refining the Stellar Parameters of τ Ceti: a Pole-on Solar Analog

    Get PDF
    To accurately characterize the planets a star may be hosting, stellar parameters must first be well determined. τ Ceti is a nearby solar analog and often a target for exoplanet searches. Uncertainties in the observed rotational velocities have made constraining τ Ceti’s inclination difficult. For planet candidates from radial velocity (RV) observations, this leads to substantial uncertainties in the planetary masses, as only the minimum mass ( msinim\sin i ) can be constrained with RV. In this paper, we used new long-baseline optical interferometric data from the CHARA Array with the MIRC-X beam combiner and extreme precision spectroscopic data from the Lowell Discovery Telescope with EXPRES to improve constraints on the stellar parameters of τ Ceti. Additional archival data were obtained from a Tennessee State University Automatic Photometric Telescope and the Mount Wilson Observatory HK project. These new and archival data sets led to improved stellar parameter determinations, including a limb-darkened angular diameter of 2.019 ± 0.012 mas and rotation period of 46 ± 4 days. By combining parameters from our data sets, we obtained an estimate for the stellar inclination of 7° ± 7°. This nearly pole-on orientation has implications for the previously reported exoplanets. An analysis of the system dynamics suggests that the planetary architecture described by Feng et al. may not retain long-term stability for low orbital inclinations. Additionally, the inclination of τ Ceti reveals a misalignment between the inclinations of the stellar rotation axis and the previously measured debris disk rotation axis ( i _disk = 35° ± 10°)
    corecore