1,482 research outputs found
Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation
We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of
point dipoles, in an attempt to examine the effects of geometric anisotropy on
the local field distribution. The various problems encountered in the
computation of the conditionally convergent summation of the near field are
addressed and the methods of overcoming them are discussed. The results show
that the geometric anisotropy has a significant impact on the local field
distribution. The change in the local field can lead to a generalized
Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte
The first products made in space: Monodisperse latex particles
The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles
Field-induced structure transformation in electrorheological solids
We have computed the local electric field in a body-centered tetragonal (BCT)
lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to
examine the effects of a structure transformation on the local field strength.
For the ground state of an electrorheological solid of hard spheres, we
identified a novel structure transformation from the BCT to the face-centered
cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard
sphere constraint. In contrast to the previous results, the local field
exhibits a non-monotonic transition from BCT to FCC. As c increases from the
BCT ground state, the local field initially decreases rapidly towards the
isotropic value at the body-centered cubic lattice, decreases further, reaching
a minimum value and increases, passing through the isotropic value again at an
intermediate lattice, reaches a maximum value and finally decreases to the FCC
value. An experimental realization of the structure transformation is
suggested. Moreover, the change in the local field can lead to a generalized
Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.
Differential physiological responses to environmental change promote woody shrub expansion
Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the pr
Ubiquitin, a central component of selective cytoplasmic proteolysis, is linked to proteins residing at the locus of non-selective proteolysis, the vacuole
Ubiquitin, an evolutionary highly conserved protein, is known to be involved in selective proteolysis in the cytoplasm. Here we show that ubiquitin-protein conjugates are also found in the yeast vacuole. Mutants defective in the major vacuolar endopeptidases, proteinase yscA and yscB, lead to accumulation of ubiquitin-protein conjugates in this cellular organelle.
Differential physiological responses to environmental change promote woody shrub expansion
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 3 (2013): 1149–1162, doi:10.1002/ece3.525.Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region. To determine the effect of climate change impacts on gas exchange in tundra, we quantified foliar photosynthesis (Anet), respiration in the dark and light (RD and RL, determined using the Kok method), photorespiration (PR), carbon gain efficiency (CGE, the ratio of photosynthetic CO2 uptake to total CO2 exchange of photosynthesis, PR, and respiration), and leaf traits of three dominant species – Betula nana, a woody shrub; Eriophorum vaginatum, a graminoid; and Rubus chamaemorus, a forb – grown under long-term warming and fertilization treatments since 1989 at Toolik Lake, Alaska. Under warming, B. nana exhibited the highest rates of Anet and strongest light inhibition of respiration, increasing CGE nearly 50% compared with leaves grown in ambient conditions, which corresponded to a 52% increase in relative abundance. Gas exchange did not shift under fertilization in B. nana despite increases in leaf N and P and near-complete dominance at the community scale, suggesting a morphological rather than physiological response. Rubus chamaemorus, exhibited minimal shifts in foliar gas exchange, and responded similarly to B. nana under treatment conditions. By contrast, E. vaginatum, did not significantly alter its gas exchange physiology under treatments and exhibited dramatic decreases in relative cover (warming: −19.7%; fertilization: −79.7%; warming with fertilization: −91.1%). Our findings suggest a foliar physiological advantage in the woody shrub B. nana that is further mediated by warming and increased soil nutrient availability, which may facilitate shrub expansion and in turn alter the terrestrial carbon cycle in future tundra environments.This study was supported by the National
Science Foundation #0732664; Australian
Research Council DP0986823; and Marsden
Fund of the Royal Society of New Zealand
X-linked agammaglobulinemia diagnosed late in life: case report and review of the literature
<p>Abstract</p> <p>Background</p> <p>Common variable immune deficiency (CVID), one of the most common primary immunodeficiency diseases presents in adults, whereas X-linked agammaglobulinemia (XLA), an inherited humoral immunodeficiency, is usually diagnosed early in life after maternal Igs have waned. However, there have been several reports in the world literature in which individuals have either had a delay in onset of symptoms or have been misdiagnosed with CVID and then later found to have mutations in Bruton's tyrosine kinase (BTK) yielding a reclassification as adult-onset variants of XLA. The typical finding of absent B cells should suggest XLA rather than CVID and may be a sensitive test to detect this condition, leading to the more specific test (Btk mutational analysis). Further confirmation may be by mutational analyses.</p> <p>Methods</p> <p>The records of 2 patients were reviewed and appropriate clinical data collected. BTK mutational analysis was carried out to investigate the suspicion of adult-presentation of XLA. A review of the world literature on delayed diagnosis of XLA and mild or "leaky" phenotype was performed.</p> <p>Results</p> <p>2 patients previously diagnosed with CVID associated with virtual absence of CD19<sup>+ </sup>B cells were reclassified as having a delayed diagnosis and adult-presentation of XLA. <b>Patient 1</b>, a 64 yr old male with recurrent sinobronchial infections had a low level of serum IgG of 360 mg/dl (normal 736–1900), IgA <27 mg/dl (normal 90–474), and IgM <25 mg/dl (normal 50–415). <b>Patient 2</b>, a 46 yr old male with recurrent sinopulmonary infections had low IgG of 260 mg/dl, low IgA <16 mg/dl, and normal IgM. Mutational analysis of BTK was carried out in both patients and confirmed the diagnosis of XLA</p> <p>Conclusion</p> <p>These two cases represent an unusual adult-presentation of XLA, a humoral immunodeficiency usually diagnosed in childhood and the need to further investigate a suspicion of XLA in adult males with CVID particularly those associated with low to absent CD19<sup>+ </sup>B cells. A diagnosis of XLA can have significant implications including family counseling, detecting female carriers, and early intervention and treatment of affected male descendents.</p
Linguistics
Contains reports on five research projects.National Institute of Mental Health (Grant 5 PO1 MH-13390-04
Centralized Modularity of N-Linked Glycosylation Pathways in Mammalian Cells
Glycosylation is a highly complex process to produce a diverse repertoire of
cellular glycans that are attached to proteins and lipids. Glycans are involved
in fundamental biological processes, including protein folding and clearance,
cell proliferation and apoptosis, development, immune responses, and
pathogenesis. One of the major types of glycans, N-linked glycans, is formed by
sequential attachments of monosaccharides to proteins by a limited number of
enzymes. Many of these enzymes can accept multiple N-linked glycans as
substrates, thereby generating a large number of glycan intermediates and their
intermingled pathways. Motivated by the quantitative methods developed in
complex network research, we investigated the large-scale organization of such
N-linked glycosylation pathways in mammalian cells. The N-linked glycosylation
pathways are extremely modular, and are composed of cohesive topological
modules that directly branch from a common upstream pathway of glycan
synthesis. This unique structural property allows the glycan production between
modules to be controlled by the upstream region. Although the enzymes act on
multiple glycan substrates, indicating cross-talk between modules, the impact
of the cross-talk on the module-specific enhancement of glycan synthesis may be
confined within a moderate range by transcription-level control. The findings
of the present study provide experimentally-testable predictions for
glycosylation processes, and may be applicable to therapeutic glycoprotein
engineering
- …