33 research outputs found

    Re-education of macrophages as a therapeutic strategy in cancer.

    Get PDF
    Tumor-associated macrophages (TAMs) can be educated within the tumor microenvironment to promote cancer development and progression. While TAM-targeted agents have largely focused on macrophage depletion as an anticancer strategy, it is becoming increasingly evident that TAM re-education may represent a more effective approach. In this perspective, we discuss different means to achieve TAM re-education, and review the beneficial effects of these strategies, particularly when combined with immune checkpoint inhibitors

    Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells

    Get PDF
    Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer

    Phenotypic diversity of T cells in human primary and metastatic brain tumors revealed by multiomic interrogation.

    Get PDF
    The immune-specialized environment of the healthy brain is tightly regulated to prevent excessive neuroinflammation. However, after cancer development, a tissue-specific conflict between brain-preserving immune suppression and tumor-directed immune activation may ensue. To interrogate potential roles of T cells in this process, we profiled these cells from individuals with primary or metastatic brain cancers via integrated analyses on the single-cell and bulk population levels. Our analysis revealed similarities and differences in T cell biology between individuals, with the most pronounced differences observed in a subgroup of individuals with brain metastasis, characterized by accumulation of CXCL13-expressing CD39 <sup>+</sup> potentially tumor-reactive T (pTRT) cells. In this subgroup, high pTRT cell abundance was comparable to that in primary lung cancer, whereas all other brain tumors had low levels, similar to primary breast cancer. These findings indicate that T cell-mediated tumor reactivity can occur in certain brain metastases and may inform stratification for treatment with immunotherapy

    ICOS regulates the generation and function of human CD4+ Treg in a CTLA-4 dependent manner

    Get PDF
    Inducible co-stimulator (ICOS) is a member of CD28/Cytotoxic T-lymphocyte Antigen-4 (CTLA-4) family and broadly expressed in activated CD4+ T cells and induced regulatory CD4+ T cells (CD4+ iTreg). ICOS-related signal pathway could be activated by the interaction between ICOS and its ligand (ICOSL). In our previous work, we established a cost-effective system to generate a novel human allo-antigen specific CD4hi Treg by co-culturing their naïve precursors with allogeneic CD40-activated B cells in vitro. Here we investigate the role of ICOS in the generation and function of CD4hi Treg by interrupting ICOS-ICOSL interaction with ICOS-Ig. It is found that blockade of ICOS-ICOSL interaction impairs the induction and expansion of CD4hi Treg induced by allogeneic CD40-activated B cells. More importantly, CD4hi Treg induced with the addition of ICOS-Ig exhibits decreased suppressive capacity on alloantigen-specific responses. Dysfunction of CD4hi Treg induced with ICOS-Ig is accompanied with its decreased exocytosis and surface CTLA-4 expression. Through inhibiting endocytosis with E64 and pepstatin A, surface CTLA-4 expression and suppressive functions of induced CD4hi Treg could be partly reversed. Conclusively, our results demonstrate the beneficial role of ICOS-ICOSL signal pathway in the generation and function of CD4hi Treg and uncover a novel relationship between ICOS and CTLA-4. © 2013 zheng et al.published_or_final_versio

    Mesenchymal Stromal Cells Improve Salivary Function and Reduce Lymphocytic Infiltrates in Mice with Sjögren's-Like Disease

    Get PDF
    Non-obese diabetic (NOD) mice develop Sjögren's-like disease (SS-like) with loss of saliva flow and increased lymphocytic infiltrates in salivary glands (SGs). There are recent reports using multipotent mesenchymal stromal cells (MSCs) as a therapeutic strategy for autoimmune diseases due to their anti-inflammatory and immunomodulatory capabilities. This paper proposed a combined immuno- and cell-based therapy consisting of: A) an injection of complete Freund's adjuvant (CFA) to eradicate autoreactive T lymphocytes, and B) transplantations of MSCs to reselect lymphocytes. The objective of this was to test the effectiveness of CD45(-)/TER119(-) cells (MSCs) in re-establishing salivary function and in reducing the number of lymphocytic infiltrates (foci) in SGs. The second objective was to study if the mechanisms underlying a decrease in inflammation (focus score) was due to CFA, MSCs, or CFA+MSCs combined.Donor MSCs were isolated from bones of male transgenic eGFP mice. Eight week-old female NOD mice received one of the following treatments: insulin, CFA, MSC, or CFA+MSC (combined therapy). Mice were followed for 14 weeks post-therapy. CD45(-)/TER119(-) cells demonstrated characteristics of MSCs as they were positive for Sca-1, CD106, CD105, CD73, CD29, CD44, negative for CD45, TER119, CD11b, had high number of CFU-F, and differentiated into osteocytes, chondrocytes and adipocytes. Both MSC and MSC+CFA groups prevented loss of saliva flow and reduced lymphocytic infiltrations in SGs. Moreover, the influx of T and B cells decreased in all foci in MSC and MSC+CFA groups, while the frequency of Foxp3(+) (T(reg)) cell was increased. MSC-therapy alone reduced inflammation (TNF-α, TGF-β), but the combination of MSC+CFA reduced inflammation and increased the regenerative potential of SGs (FGF-2, EGF).The combined use of MSC+CFA was effective in both preventing saliva secretion loss and reducing lymphocytic influx in salivary glands

    The evidence for placental microbiome and its composition in healthy pregnancies: A systematic review

    No full text
    Objective: To assess the available scientific evidence regarding the placental microbial composition of a healthy pregnancy, the quality of this evidence, and the potential relation between placental and oral microbiome. Materials and methods: Data sources: MEDLINE and EMBASE up to August 1, 2019. Study eligibility criteria: Human subjects; healthy women; term deliveries; healthy normal birth weight; assessment of microorganisms (bacteria) in placental tissue; full research papers in English. The quality of the included studies was assessed by a modified Joanna Briggs Institute checklist for analytical cross-sectional studies. Results: 57 studies passed the inclusion criteria. Of these, 33 had a high risk of quality bias (e.g., insufficient infection control, lack of negative controls, poor description of the healthy cases). The remaining 24 studies had a low (N = 12) to moderate (N = 12) risk of bias and were selected for in-depth analysis. Of these 24 studies, 22 reported microorganisms in placental tissues, where Lactobacillus (11 studies), Ureaplasma (7), Fusobacterium (7), Staphylococcus (7), Prevotella (6) and Streptococcus (6) were among the most frequently identified genera. Methylobacterium (4), Propionibacterium (3), Pseudomonas (3) and Escherichia (2), among others, although frequently reported in placental samples, were often reported as contaminants in studies that used negative controls. Conclusions: The results support the existence of a low biomass placental microbiota in healthy pregnancies. Some of the microbial taxa found in the placenta might have an oral origin. The high risk of quality bias for the majority of the included studies indicates that the results of individual papers should be interpreted with caution

    Immunogenomic analysis of human brain metastases reveals diverse immune landscapes across genetically distinct tumors.

    No full text
    Brain metastases (BrMs) are the most common form of brain tumors in adults and frequently originate from lung and breast primary cancers. BrMs are associated with high mortality, emphasizing the need for more effective therapies. Genetic profiling of primary tumors is increasingly used as part of the effort to guide targeted therapies against BrMs, and immune-based strategies for the treatment of metastatic cancer are gaining momentum. However, the tumor immune microenvironment (TIME) of BrM is extremely heterogeneous, and whether specific genetic profiles are associated with distinct immune states remains unknown. Here, we perform an extensive characterization of the immunogenomic landscape of human BrMs by combining whole-exome/whole-genome sequencing, RNA sequencing of immune cell populations, flow cytometry, immunofluorescence staining, and tissue imaging analyses. This revealed unique TIME phenotypes in genetically distinct lung- and breast-BrMs, thereby enabling the development of personalized immunotherapies tailored by the genetic makeup of the tumors

    An integrated pipeline for comprehensive analysis of immune cells in human brain tumor clinical samples.

    No full text
    Human tissue samples represent an invaluable source of information for the analysis of disease-specific cellular alterations and their variation between different pathologies. In cancer research, advancing a comprehensive understanding of the unique characteristics of individual tumor types and their microenvironment is of considerable importance for clinical translation. However, investigating human brain tumor tissue is challenging due to the often-limited availability of surgical specimens. Here we describe a multimodule integrated pipeline for the processing of freshly resected human brain tumor tissue and matched blood that enables analysis of the tumor microenvironment, with a particular focus on the tumor immune microenvironment (TIME). The protocol maximizes the information yield from limited tissue and includes both the preservation of bulk tissue, which can be performed within 1 h following surgical resection, as well as tissue dissociation for an in-depth characterization of individual TIME cell populations, which typically takes several hours depending on tissue quantity and further downstream processing. We also describe integrated modules for immunofluorescent staining of sectioned tissue, bulk tissue genomic analysis and fluorescence- or magnetic-activated cell sorting of digested tissue for subsequent culture or transcriptomic analysis by RNA sequencing. Applying this pipeline, we have previously described the overall TIME landscape across different human brain malignancies, and were able to delineate disease-specific alterations of tissue-resident versus recruited macrophage populations. This protocol will enable researchers to use this pipeline to address further research questions regarding the tumor microenvironment
    corecore