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SUMMARY
Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-
grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding
of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted
differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME
landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue character-
ization. This revealed disease-specific enrichment of immune cells with pronounced differences in propor-
tional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils,
and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain ma-
lignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-
specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this
comprehensive resource of the immune landscape offers insights into possible strategies to overcome
tumor-supporting TME properties and instead harness the TME to fight cancer.
INTRODUCTION

Brain malignancies include tumors that arise within the brain,

such as low-grade gliomas and glioblastomas, and brain metas-

tases (BrMs), which originate from extracranial primary tumors,

including melanoma, breast, and lung cancers (Cagney et al.,

2017). Gliomas mutant for the metabolic enzymes isocitrate de-

hydrogenase 1 and 2 (IDH mut) are generally low grade (II or III)

and have a significantly better prognosis than IDH wild-type

(WT) tumors, which are typically grade IV glioblastomas. Despite

standard of care treatment comprising surgery followed by radi-

ation and temozolomide (Stupp et al., 2005), median survival

rates for glioblastoma patients remain stubbornly low (Aldape

et al., 2019). Patient survival following BrM diagnosis can be

even lower, with rates typically measured in months (Cagney

et al., 2017; Ceccarelli et al., 2016), and among all adult brain tu-
mors, the incidence of BrMs significantly exceeds that of

gliomas.

Given the current limited treatment options for these pa-

tients, a key question to address is whether a deep compre-

hensive understanding of how primary and metastatic cancers

develop within the brain tumor microenvironment (TME) could

reveal promising new targets for therapeutic intervention.

Although diverse TME cell types can critically regulate cancer

progression and response to therapy across a broad range

of extracranial tumors (Klemm and Joyce, 2015), we cannot

simply extrapolate findings from these cancers to the singular

brain TME, given its unique cell types, including astrocytes,

neurons, and microglia (MG); the immune-suppressive environ-

ment of this organ; and the challenges presented for cells and

drugs to cross the blood-brain barrier (BBB) (Quail and

Joyce, 2017).
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Immune checkpoint blockade (ICB), adoptive cell therapy, and

vaccines represent treatments targeted against immune cells

within the TME and systemically. The success of immunother-

apies in certain extracranial cancers has led to clear motivation

for their evaluation in brain malignancies. However, although

they show some clinical efficacy in a subset of BrM patients

(Hendriks et al., 2019; Long et al., 2018; Tawbi et al., 2018),

ICB has only resulted in responses in isolated cases of primary

gliomas to date (Lim et al., 2018; Schalper et al., 2019). Beyond

tumor cell-intrinsic effects, this may be attributed in part to im-

mune-suppressive components of the brain TME, including tu-

mor-associated macrophages (TAMs), which have emerged as

prominent players in brain cancers (Gutmann and Kettenmann,

2019; Quail and Joyce, 2017).

Lineage-tracing experiments in mice revealed that brain TAMs

can originate from tissue-resident MG ormonocyte-derived mac-

rophages (MDMs) recruited from the peripheral circulation

(Bowman et al., 2016; Chen et al., 2017). TAMs are highly plastic

cells that integrate input from cytokines, growth factors, and other

stimuli, resulting in diverse activation states and cellular pheno-

types, including promotion of invasion, angiogenesis, metastasis,

and immunesuppression (Mantovani et al., 2017;NoyandPollard,

2014). This plasticity and their position at the nexus between ma-

lignant cells and tumor-infiltrating T cellsmakes TAMsapromising

target of TME-directed therapies in different cancers. Indeed,

studies inmice showed that phenotypic alteration of TAMs results

in anti-tumor efficacy in glioblastoma (Pyonteck et al., 2013; Quail

et al., 2016; Yan et al., 2017), whereas TAM depletion prevents

BrM outgrowth (Qiao et al., 2019).

Despite these preclinical studies, the precise contribution of

the two ontogenetically distinct TAM cell types in human brain

malignancies is unclear, which hinders clinical translation. For

example, previous studies interrogating the role of TAMs in pa-

tient brain tumors did not distinguish between MG and MDMs

based on use of lineage tracing-derived markers (Gabrusiewicz

et al., 2016; Sankowski et al., 2019; Szulzewsky et al., 2016) or

focused solely on gliomas (Müller et al., 2017; Venteicher et al.,

2017). We therefore interrogated the TME landscape in gliomas

and BrMs, with an emphasis on exploring TAMs, while also

investigating their relation to other immune cells and structures

in the TME. We leveraged this multimodal resource to address

a number of questions. Do tumors arising within the brain shape
Figure 1. The Immune Cell Composition of Brain Malignancies

(A) Quantification of immunofluorescence (IF) staining of non-immune (CD45�) a
(nIDH mut = 16, nIDH WT = 16), and brain metastases (BrMs, nbreast = 12, nlung = 5,

(B) Flow cytometry (FCM) quantification of non-immune cells (CD45�), myeloid c

(n = 6), gliomas (nIDH mut = 17, nIDH WT = 40), and BrMs (nbreast = 13, nlung = 16, n

(C) Gene set variation analysis (GSVA) normalized enrichment score (NES) of M

CD49Dhigh MDMs from non-tumor and tumor tissues.

(D) Heatmap of immune cell proportions in relation to all CD45+ cells (MG, micro

monocyte; CD14+/CD16+, CD14+/CD16+ monocyte; CD16� Gran., CD16� granu

DNT, double-negative T cell) across the cohort (nnon-tumor = 6, nglioma = 57, nBrM =

tumor are annotated per column (for clinical information, see Table S1).

(E) Principal component (PC) biplot of FCMdata with sample scores and top 5 load

on PC axes).

(F) Mean of immune cell populations in non-tumor tissue (n = 6), gliomas (nIDHmut =

of CD45+ cells.

See also Figure S1 and Tables S1 and S2.
their TME differently than cancers that metastasize from extra-

cranial sites? Does IDH mutation status affect the TME? How

do distinct TME compositions potentially modulate the activa-

tion states of immune cells? By integrating the answers to these

questions, we provide insights into potential strategies to

harness the brain TME in the fight against these deadly diseases.

RESULTS

Tumor Origin and IDH Mutational Status Influence the
Immune Composition of Brain Malignancies
We first determined the broad immune cell abundance in the

brain TME by analyzing the pan-leukocyte marker CD45 through

immunofluorescence (IF) staining of whole-tissue sections and

flow cytometry (FCM) analyses of non-tumor brain tissue, IDH

mut low-grade and IDH WT high-grade gliomas, and BrMs orig-

inating from different primaries, including breast cancer, lung

cancer, and melanoma (Figures 1A, 1B, and S1A). This showed

a leukocyte abundance from �20%–40% across the cancer

samples. Stratification of CD45+ cells into myeloid and lymphoid

lineages revealed a significant increase in myeloid cells in IDH

mut and IDH WT gliomas and of lymphocytes in IDH WT tumors

and BrMs compared with non-tumor tissue (Figure 1B; p < 0.05,

one-sided Student’s t test). We used multicolor fluorescence-

activated cell sorting (FACS) to analyze 14 major immune cell

populations across 100 clinical samples (Figure S1A; Tables

S1 and S2) and collected cells for RNA sequencing (RNA-seq)

from 48 patients (Table S3; full clinical annotation).

By incorporating cell lineage tracing and mouse models of

high-grade gliomas and BrM, we previously identified the cell

surface marker integrin alpha 4, ITGA4/CD49D, as a means to

discriminate tumor-associated MG (T-MG) from tumor-associ-

ated MDMs (T-MDMs) (Bowman et al., 2016), which we inte-

grated here into clinical sample analyses. This enabled sorting

of CD45� non-immune cells, CD49Dlow MG, CD49Dhigh MDMs,

neutrophils, and CD4+ and CD8+ T cells (Figure S1A; Tables S2

and S3A) for transcriptome analysis by RNA-seq. We assessed

sorting fidelity by FCM re-analysis of the sorted CD49Dlow and

CD49Dhigh TAM populations (purity, 98.4%–99.8%) and by

investigating the frequency of the canonical IDH codon 132

missense mutation in the RNA-seq reads from CD45� cells

and CD49Dlow and CD49Dhigh TAM populations. Although we
nd immune cells (CD45+) in sections of non-tumor brain tissue (n = 6), gliomas

nmelanoma = 7). Data are represented as mean ± SEM.

ells (CD45+, CD11B+), and lymphocytes (CD45+, CD11B�) in non-tumor tissue

melanoma = 8). Data are represented as mean ± SEM.

G and MDM ontogeny-specific core gene signatures in CD49Dlow MG and

glia; MDM, monocyte-derived macrophage; CD14low/CD16+, CD14low/CD16+

locyte; iMC, immature myeloid cell; DC, dendritic cell; Treg, regulatory T cell;

37). Cluster assignment, disease type, IDH mutation status, and BrM primary

ings of the first two PCs (n = 100 clinical samples, proportion of variance shown

17, nIDH WT = 40), and BrMs (nbreast = 13, nlung = 16, nmelanoma = 8) as percentage
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observed ameanmutated allele frequency of 0.43 in CD45� cells

from IDH mut gliomas (range, 0.3–0.61), this was very rare in

TAMs (mean, 0.01; range, 0.0–0.09), indicating reliable separa-

tion of cell populations. In a t-distributed stochastic neighbor

embedding (t-SNE) visualization of sorted populations, samples

clustered mostly by cell type (Figure S1B), with gliomas and

BrMs discernible as separate groups in the CD45� population.

In this global expression analysis in the context of the other

major brain TME components, CD49Dlow and CD49Dhigh TAM

populations clustered closely, suggesting broad transcriptomic

similarity. We thus further interrogated the utility of CD49D to

differentiate between TAM populations by analyzing association

of MG- and MDM-specific ontogeny core gene sets, identified

previously from lineage-tracing studies (Bowman et al., 2016),

in human CD49Dlow and CD49Dhigh cells sorted from non-malig-

nant and brain cancer tissues. This revealed enrichment of

ontogeny core gene sets in the corresponding cell type (Fig-

ure 1C), demonstrating our ability to accurately distinguish MG

and MDMs in human samples across different disease entities.

Interestingly, these core signatures were influenced within

certain tumor types, with T-MDMs showing an increased MG

core gene set signal in IDH mut gliomas and T-MG acquiring

MDM features in BrMs, suggesting tissue-dependent transcrip-

tional programming of these cells, as further interrogated below.

We next assessed the landscape of intratumoral immune cell

populations (Figure S1A; Table S2) using clustering analysis to

identify patterns of cellular abundance (Figure 1D; chi-square

test for independence, p < 0.0001). This revealed three major

clusters: (1) non-tumor samples and IDHmut gliomas character-

ized by dominance of MG with low numbers of other immune

cells; (2) IDH WT gliomas and several BrMs with an influx of

MDMs and, to some extent, neutrophils into the tumor while

mostly excluding lymphocytes; and (3) predominantly BrMs and

few IDH WT gliomas exhibiting the most diverse immune cell

landscape with substantial infiltration of T cells and neutrophils.

Certain tumors contained CD14low/CD16+ non-classical mono-

cytes, CD14+/CD16+ intermediate monocytes, CD16� granulo-

cytes, dendritic cells (DCs), or immature myeloid cells. Across

all samples, the lymphocyte compartmentwasmostly composed

of T cells with fewer natural killer (NK) cells and B cells.

Principal-component analysis (PCA) of the relative abundance

of all investigated populations confirmed that MG, MDMs, neu-

trophils, and CD4+ and CD8+ T cells are the major immune cell

determinants of the brain TME landscape (Figure 1E). Principal

component 1 (PC1) separated non-tumor tissue and IDHmut gli-

omas from IDH WT gliomas and BrMs, whereas PC2 distin-

guished IDH WT gliomas and BrMs. Further analysis stratifying

for IDH status in gliomas and the primary tumor site in BrMs veri-

fied a substantially higher proportion of lymphocytes in BrMs

(Figure 1F; meanlymphocytes %CD45
+ = 46.23%, SEM = 4.15, t

test, p < 0.0001). Melanoma BrMs exhibited the most abundant

lymphocyte infiltrate with a sizeable CD8+ T cell fraction

(meanCD8
+

%CD45
+ = 33.01%, SEM = 5.82, one-way ANOVA,

p < 0.01). Regulatory T cells (Tregs) were detected in certain

BrMs (meanTreg %CD45
+ = 1.2%, SEM = 0.36) but were rare in gli-

omas (meanTreg %CD45
+ = 0.25 %, SEM = 0.05, t test, p < 0.05).

Because of the prominence of T-MG and T-MDMs in the

myeloid compartment of brain malignancies, we used IF staining
1646 Cell 181, 1643–1660, June 25, 2020
and deconvolution analyses to independently validate their pres-

ence. Commonly employed MG markers, such as P2RY12,

TMEM119, and SALL1, and MDM-associated genes, such as

AHR and VDR, showed varying RNA expression levels across

different brain malignancies while maintaining their cell type

specificity (Figure S2A) in a similar manner as observed for the

ontogeny core gene sets (Figure 1C). An equivalent pattern

was observed at the protein level (Figure S2B), where P2RY12

showed the highest expression in non-tumor tissue, and CD68

was most abundant in BrM-TAM populations. This necessitated

use of bothmarkers complemented by CD49D to reliably identify

MGandMDMs in IF analyses (Figure S2C).We used this strategy

to interrogate a cohort of non-tumor, glioma, and BrM samples

by whole-section quantification, confirming MDM accumulation

in IDH WT gliomas and BrMs (Figures 2A–2C). Furthermore,

comparison of tissue processed independently for IF and FCM

from the same individual samples demonstrated significant

concordance (Figure S2D).

We queried the sorted cell populations for T-MG- and T-MDM-

specific differentially expressed genes (DEGs) that separate

these two populations from the most abundant other cell types;

i.e., CD45� cells, neutrophils, and T cells (Figure S2E). Several of

the genes highly expressed in T-MG are well-established MG

markers (P2RY12, TMEM119, and TAL1), whereas genes highly

expressed in T-MDMs include markers of alternative macro-

phage polarization (FCGR2B andCLEC10A) and DC-like pheno-

types (CD1C,CD1B, andCD207) with increased phagocytic and

antigen cross-presentation ability (CD209). These gene sets also

allowed us to utilize a publicly available integrated dataset (Vivian

et al., 2017) containing bulk expression data of healthy cortical

brain tissue from the Genotype-Tissue Expression project

(GTEx; GTEx Consortium, 2013) and low- and high-grade glioma

samples from TheCancer GenomeAtlas (TCGA; Ceccarelli et al.,

2016) in a bulk tissue transcriptome deconvolution approach

(Racle et al., 2017). The estimates obtained ofMGandMDMpro-

portions in this external dataset (n = 711 samples) verified the

prevalence of MG in IDH mut gliomas and MDM enrichment in

IDH WT gliomas (Figure 2D).

MG and MDMs Exhibit a Multifaceted Polarization
Phenotype in Brain Malignancies
We next employed PCA to specifically focus on TAMs and

analyze genes whose expression was influenced by tissue type

(i.e., reference MDMs, non-tumor brain, gliomas, and BrMs)

and cell type (i.e., MG and MDMs) (Figure 3A). Within the first

two PCs, MG and MDMs projected into different spaces, with

in vitro differentiated MDMs distinct from tissue-derived sam-

ples. We observed a gradient across PC1 with non-tumor brain

tissue at one end, traversing IDH mut and IDH WT gliomas,

and ending with BrMs. Thus, TAM transcriptomic changes are

influenced by the brain TME per se and also by the specific

type of malignancy.

We contrasted T-MG and T-MDMs from BrMs or gliomas

(regardless of IDH mutation status) with MG from non-tumor

brain or in vitro differentiated MDMs from healthy donors,

respectively (Figure S3A; Tables S3A and S4). This revealed pro-

found expression changes in both populations, with T-MDMs ex-

hibiting a higher magnitude in their transcriptional response
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Figure 2. Analysis of MG and MDM Abundance

(A and B) Representative IF images (A) and corresponding cell type identification (B) of MG (CD45+, P2RY12+/CD68+, CD49D�), MDMs (CD45+, P2RY12+/CD68+,

CD49D+), and non-immune (CD45�) and non-TAM immune cells (CD45+, P2RY12�/CD68�, CD49D�/+) in non-tumor brain tissue, IDHmut and IDHWT gliomas,

and BrMs. Scale bars, 100 mm. Insets show quantification per field of view (FOV).

(C) IF quantification of MG and MDM abundance in non-tumor brain tissue (n = 6), IDH mut (n = 16) and IDH WT (n = 16) gliomas, and BrMs (n = 24).

(D) Deconvolution of merged GTEx and TCGA glioma datasets, showing relative abundance of MG, MDMs, and non-TAMs (‘‘other cells’’) in healthy frontal cortex

and IDH mut and IDH WT gliomas.

Wilcoxon rank-sum test was used for statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. See also Figure S2.
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compared with T-MG (Figure S3A). The intersect of DEGs in gli-

omas and BrMs was highest in T-MDMs (Figure S3B), potentially

reflecting the greater changes experienced by these cells upon

entering the completely foreign environment of a brain tumor.

This was also evident when focusing on genes upregulated in gli-

omas and BrMs that are exclusive to T-MG or T-MDMs (Fig-

ure 3B). In T-MG and T-MDMs, the number of shared genes

was higher across different diseases than between these two

cell populations within the same tumor type. Consequently,

only a small number of genes (n = 137) showed concordant up-

regulation across a comparison of all diseases and TAM types

(Figure 3B).

To explore the underlying biological processes conserved in

gliomas and BrMs, we examined the intersect of upregulated

genes (Figure S3B) in T-MG or T-MDMs using gene set over-

representation analysis (ORA). In the Molecular Signature Data-

base (MSigDB; Liberzon et al., 2015) ‘‘hallmark’’ collection of

major biological categories, T-MG and T-MDMs showed

pathway enrichment in (1) modeling of the TME (‘‘Angiogenesis,’’

‘‘Hypoxia’’), (2) inflammation (‘‘Inflammatory Response,’’ ‘‘Allo-

graft Rejection’’), and (3) immune cell activation states (‘‘TNF⍺

Signaling via NFkB,’’ ‘‘Interferon ⍺ Response,’’ ‘‘Interferon g
Response,’’ ‘‘IL2 STAT5 Signaling,’’ and ‘‘IL6 JAK STAT3

Signaling’’) (Figure S3C).

We also assessed the M1 and M2 polarization status of T-MG

and T-MDMs using a panel of marker genes (Murray et al., 2014).

However, no evident pattern emerged of a definedM1 versusM2

phenotype in glioma or BrM T-MG or T-MDMs (Figure S3D). To

further explore the activation state of T-MG and T-MDMs, we

subjected their respective upregulated genes to ORA of

macrophage stimulus-specific programs (Xue et al., 2014). This

revealed a multifaceted response (Figure 3C) incorporating ca-

nonical M1 (interferon g [IFNg]) and M2 polarization (inter-

leukin-4 [IL-4]), including expression changes associated with

chronic inflammatory stimuli (tumor necrosis factor alpha

[TNF-⍺] + prostaglandin E [PGE2] and TNF⍺ + PGE2 +

Pam3CysSerLys4 [TPP]) and exposure to free fatty acids (oleic

acid [OA] and palmitic acid [PA]), which have been implicated

in modulating myeloid cell function (Thapa and Lee, 2019). This

indicates diverse transcriptional programming of T-MG and

T-MDMs in gliomas and BrMs extending beyond simple M1

versus M2 polarization.

To understand which processes are linked to and potentially

driving these responses, we identified the gene set enrichment
Cell 181, 1643–1660, June 25, 2020 1647
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Figure 3. MG and MDMs Exhibit a Multifaceted Polarization Phenotype in Brain Malignancies

(A) PC biplot of MG and MDM transcriptome data from non-tumor brain tissue, IDHmut and IDHWT gliomas, and BrMs (for clinical information, see Table S3A;

reference = in-vitro-generated MDMs; proportion of variance shown on PC axes).

(B) Visualization of intersects of the conserved sets of significantly upregulated genes in MG and MDMs. Intersects between sets are shown in the combination

matrix. ngenes found uniquely in a gene set or intersect is indicated above individual bars.

(C) Stimulus-specific macrophage gene expression modules overrepresented (within conserved differentially expressed genes [DEGs] versus respective ref-

erences) in tumor associated MG (T-MG) and tumor-associated MDMs (T-MDMs). Bar heights and color indicate significance level. GC, glucocorticoid; IFNg,

(legend continued on next page)
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analysis (GSEA; Subramanian et al., 2005) leading-edge genes in

T-MG and T-MDMs in gliomas and BrMs and clustered them into

leading-edge metagenes (LEMs) with non-negative matrix

factorization (Godec et al., 2016). This identified up to 5 distinct

LEMs per cell type and comparison that were tested for signifi-

cant overlap in a pairwise fashion (Figure S3E) and annotated us-

ing GeneOntology (GO) terms (Figure 3D). LEMs associated with

mitosis and cell proliferation were present in T-MG and T-MDMs

in gliomas and BrMs (Figure 3D, group 1). The biological validity

of these LEMs were verified by staining for Ki-67, a marker of cell

proliferation, in non-tumor, glioma, and BrM tissue sections (Fig-

ure 3E), showing increased proliferation in T-MG and T-MDMs in

IDH WT gliomas and BrMs and in T-MG in IDH mut gliomas.

Interestingly, LEMs enriched for type I IFN signaling were de-

tected in glioma and BrM T-MDMs and in BrM T-MG but not in

glioma T-MG (Figure 3D, group 2). Sustained type I IFN signaling

has been implicated in mediating immune suppression and ICB

resistance (Benci et al., 2016). The stringency of these group 2

LEMs was validated by building a protein-protein interaction

(PPI) network of the shared LEM genes (Figure S3F). Beyond

their role in antiviral responses, the genes highlighted at the cen-

ter of the PPI network (Figure S3F, red nodes) have been impli-

cated in a variety of tumor-promoting and -suppressing roles

(Benci et al., 2016). Similarly, the more peripheral network nodes

IL15 and TNFSF10 are potentially able to modulate an effective

immunological anti-tumor response or induce apoptosis in can-

cer cells, respectively (Bouralexis et al., 2005; Santana Carrero

et al., 2019). We asked whether these genes were directly

induced by secreted factors in the brain TME and established

cell-based assays to exposeMDMs to TME conditionedmedium

(CM) generated from single-cell suspensions of freshly isolated

glioma or BrM samples in culture. All genes analyzed were upre-

gulated by BrM-TME-CM and to a lesser extent by glioma TME-

CM (Figure 3F). We also detected induction of inflammation- and

nuclear factor kB (NFkB) signaling-associated LEMs in BrM-MG,

glioma MDMs, and BrM-MDMs (Figure 3D, group 3). LEMs that

point toward a Th17 response (group 4) and recruitment of im-

mune cells and interactions between different immune cell com-

partments were exclusively detected in MDMs (group 5). Collec-

tively, these analyses reveal acquisition of a multifaceted

activation state of MG and MDMs upon their integration into

the TME of brain malignancies.

IDHMutation Status Associated with Changes in Glioma
TAM Activation
We next asked whether MG and MDMs occupy distinct regions

within the TME of IDHWT gliomas. Spatial analysis of tissue sec-

tions showed significant enrichment of both populations in the
interferon gamma; LA, lauric acid; LiA, linoleic acid; OA, oleic acid; PA, palmitic ac

necrosis factor alpha; TPP, TNFa + PGE2 + Pam3CysSerLys4; IL-10, interleukin

(D) Heatmap of GO overrepresentation analysis of leading-edge metagenes (LE

(hypergeometric test, -log10 (adjusted p value), terms were filtered by significan

(E) IF quantification of the proportion of proliferating Ki67+MGandMDMs in non-tu

Means were compared with one-tailed t test: *p < 0.05.

(F) qRT-PCR of type I IFN LEM marker genes from group 2 (Figure S3F) in in-v

medium (TME CM). Fold changes were calculated relative to colony-stimulating fa

Data are represented as mean ± SEM.

See also Figure S3 and Table S4.
perivascular niche (Figures 4A and S4A). Analysis of their distri-

bution relative to CD31+ vascular structures showed a closer

proximity of T-MDMs compared with T-MG (Figures 4B and

S4A). Interrogation of anatomical transcriptome data from the

Ivy Glioblastoma Atlas Project (Ivy GAP) study (Puchalski et al.,

2018) also demonstrated enrichment of T-MDMs in the micro-

vascular compartment (Figure S4B). This enrichment coincided

with CD4+ and CD8+ T cells, indicating further spatial TME orga-

nization in IDH WT gliomas.

We assessed whether the distinct T-MG and T-MDM distribu-

tions and cell numbers are paralleled by their activation state. In

the LEM analysis, we had detected a type I IFN response in gli-

oma MDMs but not MG (Figure 3D); we therefore queried the

FCM data to analyze levels of major histocompatibility complex

(MHC) class II human leukocyte antigen-DR isotype (HLA-DR)

expression. This showed significantly increased HLA-DR in

T-MDMs compared with T-MG in IDH mut and IDH WT tumors

(Figure 4C). We screened the associated RNA-seq data for anti-

gen processing and presentation pathway gene sets usingGSEA

and gene set variation analysis (GSVA) (Figure 4D). Interestingly,

we found evidence of increased expression of MHC class II an-

tigen presentation gene sets in IDH WT glioma MDMs and also

antigen processing-associated pathways (Figure S4C) and

MHC class I presentation gene sets (Figure 4D). Although these

findings suggest the potential of TAMs, particularly T-MDMs, to

initiate an immune response, this potential is generally not real-

ized in the glioma TME, based on the current status of ICB trials

in this disease, and we thus asked whether there was also evi-

dence of pro-tumor states in these cell populations.

We compared T-MG and T-MDMs from IDH WT gliomas with

T-MG from IDH mut gliomas because they constitute the most

abundant TME cell types in these tumors, respectively (Figures

1F and 2C; Table S5). This revealed 489 DEGs in T-MG (Fig-

ure 4E; Table S5; 406 up- and 83 downregulated), and 1,478

DEGs in T-MDMs (Figure 4F; Table S5; 903 up- and 575 down-

regulated). Although these gene lists were generated by

comparing T-MDMs from IDH WT gliomas with T-MG from IDH

mut gliomas, they similarly separated T-MDMs in IDHmut versus

IDH WT disease in a clustering analysis (Figure 4F), indicating

that they indeed reflect T-MDM alterations based on the IDH sta-

tus of the tumor. 421 genes exhibit a similar pattern across both

TAM cell types (343 up- and 78 downregulated), suggesting that

T-MG and T-MDMs can also acquire a common transcriptional

pattern in IDH WT tumors. Among the shared genes were

several encoding extracellular matrix (ECM) proteins (Figure 4G,

FN1 and VCAN) and ECM-associated matricellular proteins

(THBS1, TGFBI, LGALS3, and ANGPTL4) that regulate the avail-

ability of ECM-sequestered ligands, angiogenesis, and tumor
id; PGE2, prostaglandin E2; sLPS, standard lipopolysaccharide; TNF-a = tumor

10.

Ms) in MG and MDMs from gliomas and BrMs. Tile fill indicates significance

ce).

mor tissue (n = 5), IDHmut (n = 10) and IDHWTgliomas (n = 9), andBrMs (n = 8).

itro-generated MDMs stimulated with the indicated TME culture-conditioned

ctor-1 (CSF-1)-treatedMDM baseline (one-way ANOVA, p < 0.1, nMDM = 4–11).
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immunity (Mushtaq et al., 2018). This suggests that TAMs help

shape the composition and effector functions of ECM proteins

in IDH WT tumors. We also found the anti-inflammatory mole-

cules ANXA1 and GPNMB (Figure 4G), previously implicated in

pro-tumorigenic macrophage polarization and inhibition of

T cell activation (Kobayashi et al., 2019; Ripoll et al., 2007), to

be upregulated in T-MG and T-MDMs.

We next investigated inflammation mediators within the

CD45� population of IDH WT tumors in parallel with their corre-

sponding receptors in TAMs. TGFB2 expression was elevated

compared with IDH mut CD45� cells, and the accessory trans-

forming growth factor b (TGF-b) receptor ENG was highly ex-

pressed in IDH WT TAMs (Figure 4H). TGFB2 has pleiotropic ef-

fects in inflammation and tissue remodeling during wound

healing and has been implicated in an autocrine signaling loop

in glioblastoma cells (Rodón et al., 2014). The neuroinflammatory

cytokine MDK, which modulates TAM polarization to a M2-like

phenotype in glioma (Meng et al., 2019), was upregulated in

CD45� cells from IDH WT tumors, and its receptors SDC4 and

ITGA4/CD49D were differentially expressed in T-MDMs versus

T-MG (Figure 4H), suggesting cell-type-specific effects of this in-

ferred signaling loop.

We asked whether a T-MDM-specific gene set generated from

IDH WT gliomas was associated with a survival difference in pa-

tients. By logistic regression, we derived a representative signa-

ture consisting of 36 genes (Figure S4D) from the total number of

genes upregulated in TAMs in brain malignancies (Figure 3B).

This included the macrophage marker RUNX3; the atypical che-

mokine receptor ACKR3, which can regulate CXCL12-CXCR4

signaling; the endoplasmic reticulum (ER) stress protein

HERPUD1 and the inhibitory Fc receptor FCGR2B, which can

modulate macrophage activation (Bournazos et al., 2016; Li

et al., 2018); and the cytokine IL19, which affects angiogenesis

andmacrophagepolarization (Richardset al., 2015). Thesignature

was used to classify patients in a merged TCGA dataset of low-

and high-grade gliomas (Figures 4I and S4E). In IDHmut patients,

a decrease in median overall survival was associated with enrich-

ment of the T-MDM IDHWT signature, whereas IDHWT patients

with a low enrichment score showed increased survival. This
Figure 4. IDH Mutation Status Shapes TAM Activation in Gliomas
(A) Number of MG and MDMs per square millimeter in the perivascular niche (PV

were compared with Wilcoxon signed-rank test: ***p < 0.001.

(B) Distance of MG and MDMs to the nearest vessel in IDH WT gliomas (nsamples

(C) Boxplot of HLA-DR geometric mean fluorescence intensity measured by FCM

same samples are connected by lines (nIDH mut = 17, nIDH WT = 39; Wilcoxon sign

(D) GSVA of antigen processing and presentation pathways from the Molecular S

differential enrichment between MG and MDMs in IDH WT tumors and in MG an

mutation status and cell type, and rows (Z score) are hierarchically clustered.

(E and F) Expression heatmap of T-MG (E) and T-MDM (F) DEGs (compared with T

rows (Z score) are hierarchically clustered.

(G) Normalized counts of selected genes in MG and MDMs in gliomas stratified

(H) Relative expression in CD45� MG and MDM cells of ligands and receptors upr

counterparts. Variance-stabilized expression values were scaled to the expressi

(I) Kaplan-Meier estimator of survival in the TCGA glioma cohort based on enrichm

gliomas from the combined TCGA cohort. GSVA scores were separated into tertile

calculated using a log rank test.

(J) Hazard ratios of amultivariate Cox proportional hazardsmodel with transcriptom

WT GSVA score as covariates for overall survival within the TCGA glioma cohort

See also Figure S4 and Table S5.
was confirmed in a multivariate Cox proportional hazard model

that included the transcriptomic glioma subtypes (as annotated

in the TCGA dataset) and IDH status (Figure 4J). To verify that

this effect did not simply reflect changes in T-MDM number, we

classified the TCGA cohort based on enrichment of the T-MDM-

specific gene set used for deconvolution, which showed a low ef-

fect on survival (Figure S4F).

In light of disappointing outcomes from PD1 or PDL1 ICB trials

in glioblastoma to date, we queried whether the abundant T-MG

and T-MDMs could contribute to the limited therapeutic efficacy.

We performed ORA of a panel of 20 gene sets previously asso-

ciated with innate anti-PD1 resistance (IPRES; Hugo et al.,

2016) in the TAM DEGs of IDHWT gliomas and found a sizeable

fraction to be upregulated in T-MG and T-MDMs (Figure S4G).

We then included the CD45� population and interrogated enrich-

ment of IPRES gene sets on the single-sample level by GSVA

(Figure S4H). This yielded a diverse picture with tumor cells

and TAMs enriched for IPRES gene sets to varying degrees.

Therefore, TAMs and CD45� cells from IDH WT gliomas may

contribute to mediating innate ICB resistance.

The Immune Contexture Influences the TME on a
Global Level
Through integrated analysis of protein and gene expression

data, we next explored the effect of immune cell infiltration.

Of 200 inflammation-associated proteins assessed, 55 were

differentially detected in our sample cohort (for clinical infor-

mation, see Table S3B). Unsupervised clustering analysis re-

vealed distinct clusters with abundant inflammatory proteins in

tumors (Figure 5A). The profile of IDH WT gliomas and BrMs

showed a sizeable overlap (protein cluster 1), encompassing

angiogenic factors (VEGFA and ANG), growth factors (PDGFA,

TGFB1, SPP1, and GDF15), several proteases and protease in-

hibitors (SERPINE1, CTSS, and TIMP1), the proteolysis cascade

regulator PLAUR, and the cytokines CCL2 and CCL5 (Figures

5A and S5A). However, we also found distinct protein

patterns between gliomas and BrMs. The neurotrophic growth

factor FGF2 and neuronal cell adhesion molecules, including

ALCAM, which regulates immune cell infiltration during
N) or distant from the PVN (non-PVN) in IDH WT gliomas by IF staining. Means

= 14, nMG = 88,781, and nMDM = 92,969 cells counted).

in MG and MDMs in IDH mut and IDH WT gliomas. MG and MDMs from the

ed-rank test: ***p < 0.001, ****p < 0.0001).

ignatures Database (MSigDB) ‘‘Canonical Pathways’’ collection with significant

d MDMs across IDH mut and IDH WT samples. Columns are ordered by IDH

-MG in IDHmut gliomas) in IDHmut and IDHWT glioma samples. Columns and

by IDH status. Data are represented as mean ± SEM.

egulated in CD45� cells in IDHWT versus IDHmut samples and their matching

on range.

ent for the MDM IDHWT signature, assessed by GSVA in IDHmut and IDHWT

sacross the combined IDHmut and IDHWTsample set. Pairwise p valueswere

ic subtype (TCGA annotation), IDH status (TCGAannotation), and T-MDM IDH

(PN, proneural; NE, neural; CL, classical; ME, mesenchymal subtype).
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(A) Inflammation-associated bulk tissue protein concentration heatmap subset on 55 proteins with significantly different concentrations between non-tumor

brain, gliomas, and BrMs in an ANOVA (p < 0.1, nnon-tumor = 3, nglioma = 14, nBrM = 12; concentrations were log10-transformed and Z scored). Rows and columns
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neuroinflammation (Lécuyer et al., 2017), were highly expressed

in non-tumor brain, IDHmut, and IDHWT samples (protein clus-

ter 3; Figure S5A). Conversely, BrM samples had abundant im-

mune-regulatory molecules affecting myeloid and lymphocytic

cells and their heterotypic signaling (protein cluster 2; Fig-

ure S5A), such as CD40L, IL6R, INHBA, and AREG (Morianos

et al., 2019; Zaiss et al., 2015), possibly reflecting the greater im-

mune cell diversity in BrMs. This orthogonal dataset reinforces

the RNA-seq analyses showing that inflammatory signaling path-

ways are highly enriched in brain tumors.

We integrated the cell-type-specific RNA-seq data and bulk

protein data to distinguish proteins with more restricted expres-

sion versus those that are expressed across a range of cell types.

Transcriptome data from CD45� cells, TAMs, neutrophils, and

CD4+ and CD8+ T cells from all tumor samples were clustered us-

ing a self-organizing map (SOM). This yielded 6 SOM spots (i.e.,

metagenes of co-expressed genes; Figure 5B) that recapitulated

the respective cell lineages (Figure S5B). The CD45� populations

were assigned to three distinct spots that were associated with

more aggressive IDHWT gliomas and BrMs (spot VI) or reflected

the brain-intrinsic or -extrinsic tumor origin (spots I and V). These

cell-type-associated SOM spots overlapped considerably with

the protein data (30 of 55 proteins, Fisher’s exact test, p <

0.0001; Figure 5C). Although VEGFA, ANG, and TGFB1 were ex-

pressed by diverse cell types in gliomas and BrMs, other genes,

such asGDF15 and IGFBP2, showedmore CD45� cell-restricted

expression (Figure 5D). The significant contribution of TAMs to

production of key inflammatory proteins, including SPP1 and

IHNBA, is reflected by TAM SOM spot III, constituting the largest

group of proteins with cell type-specific expression (Figures 5C

and 5D).

Myeloid Cells Show a Distinct Phenotype in BrMs
Our global analysis juxtaposing the expression patterns of

TAMs in gliomas (regardless of IDH status) with BrMs showed

disease- and cell-type-specific transcriptomic changes. We

thus explored BrM-specific alterations by focusing on genes

upregulated only in relation to the corresponding reference

and to IDH WT gliomas (Figures S6A and S6B; Table S6).

Various cytokines, chemokines, and pro-inflammatory mole-

cules were elevated in BrM-MG and BrM-MDMs (Figure 6A),

including the potent mediators of autoimmune neuroinflamma-

tion CSF2 and IL23A (Zhao et al., 2017) and the pattern

recognition receptor MARCO. Intriguingly, antibody-mediated

MARCO targeting in extracranial tumors increases M1-like po-

larization of TAMs and enhances ICB efficacy (Georgoudaki

et al., 2016). These effects relied on interaction of the antibody

with FCGR2B, which is also part of the T-MDM IDH WT signa-

ture (Figures S2E and S4C). Finally, RETN, which is involved in
are hierarchically clustered. Clinical data are annotated per row; column annot

Table S3B).

(B) Self-organizing map (SOM) of RNA expression data of major cell populations i

numerals, and annotated with their cell type association.

(C) Overlap of individual proteins and SOM spot metagenes; tile color fill reflects

(D) RNA-seq counts (normalized, scaled to expression range) of proteins from (A

membership of individual genes is indicated per row.

See also Figure S5.
systemic inflammatory disorders (Filková et al., 2009), was up-

regulated in BrM-TAMs (Figure 6A).

Analysis of individual BrM-TAM populations uncovered

distinct expression patterns. BrM-MG showed restricted upre-

gulation of IL6 (Figure 6A), which exerts immunosuppressive ef-

fects on T cell function in cancer and mediates ICB resistance

(Tsukamoto et al., 2018), and the receptor TREM1, which mod-

ulates pro-inflammatory responses in MG and systemically in

myeloid cells during neuroinflammation (Liu et al., 2019; Xu

et al., 2019). Among the upregulated chemokines, we found in-

creases in both TAM cell types (CCL23) and BrM-MG-restricted

(CXCL5 and CXCL8) or BrM-MDM-restricted increases (CCL8,

CCL13, CCL17, and CCL18) (Figure 6A). These results reveal

distinct contributions of TAM populations to the inflammatory

TME milieu in a disease-specific manner.

GSEA identified additional cell-type-specific enrichment pat-

terns. BrM-MG showed evidence of IL-6 pathway activity (Fig-

ure S6C), and in BrM-MDMs, the ‘‘Naba core matrisome’’ gene

set was significantly enriched (Figure S6D). This prompted us

to assess expression of genes encoding ECM and matricellular

proteins in BrM-MDMs versus BrM-MG, which revealed genes

encoding matrix proteins, including type III and IV collagens,

FN1, the proteoglycans LUM and OGN, and the matricellular

proteins ECM1, SPARC, and SPARCL1 as highly expressed in

BrM-MDMs (Figure 6B). Although ECM remodeling has been

implicated in tumor progression, LUM, OGN, SPARCL, and

SPARCL1 exhibit pro- and anti-metastatic properties, which un-

derscores the complex context-dependent role of the ECM (Kai

et al., 2019). We also found high expression of the cathepsin pro-

teasesCTSB andCTSW in BrM-MDMs (Figure 6B), which partic-

ipate in multiple tumor-promoting processes, including invasion

and metastasis (Olson and Joyce, 2015). The hyaluronan recep-

tor HMMR, involved in macrophage chemotaxis and fibrosis in

lung injury (Cui et al., 2019), was also higher in BrM-MDMs (Fig-

ure 6B). Together, these data suggest that the ECM is not only

shaped by macrophages at the primary site (Afik et al., 2016)

but that T-MDMs may also play a pivotal role in ECM niche con-

struction in BrM that is distinct from IDHWT gliomas (Figure 4G).

Given theupregulationofCXCL8, a keyneutrophil chemoattrac-

tant, by BrM-MG (Figure 6A), we explored the TME contribution to

recruitment of neutrophils, which were highly abundant in BrM

(Figure 1F). Analysis of major neutrophil-recruiting chemokines

and their receptors showed broad expression across all interro-

gated myeloid cells (Figure S6E). To explore the phenotype of

BrM-associated neutrophils,wequeried theRNA-seq data,which

revealed BrM-specific upregulation of ITGA3 (Figure 6C), which is

involved inneutrophil tissue infiltration insepsis, andCXCL17, pre-

viously implicated in neutrophil and macrophage recruitment in

cancer (Li et al., 2014). We also observed upregulation of the
ation reflects the major protein clusters (further information can be found in

n glioma and BrM samples. SOM spots are highlighted, numbered with Roman

protein cluster membership from (A).

) across major cell types in IDH mut and IDH WT gliomas and BrMs. SOM spot
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Figure 6. Myeloid Cells Show Distinct Transcriptional Changes in BrMs

(A) Normalized counts of the indicated genes in MG and MDMs in non-tumor or reference, IDH WT gliomas, and BrMs. Data are represented as mean ± SEM.

(B) Expression heatmap of Extracellular matrix-associated genes differentially expressed between MG and MDMs in BrMs. Rows are Z-scored and manually

sorted, and columns are ordered by cell type.

(C) Expression of the indicated BrM-specific genes in neutrophils from unmatched healthy blood, IDH WT gliomas, and BrMs. Data are represented as mean

± SEM.

See also Figure S6 and Table S6.
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adenosine receptor ADORA2A (Figure 6C), which attenuates the

phenotype of pro-inflammatory neutrophils (Barletta et al., 2012).

Furthermore, we found increased expression of CD177 (Fig-

ure 6C), a cell surface receptor that modulates neutrophil migra-

tionandactivationandservesasamarker forPR3-positiveneutro-

phils, which, in turn, negatively affect T cell proliferation (Yang

et al., 2018). Notably,MET, which has been linked to recruitment

of immunosuppressive neutrophils in cancer (Glodde et al.,

2017), was upregulated in neutrophils in a BrM-specific manner

(Figure 6C). In sum, we have uncovered multiple disease-specific

alterations of myeloid cells extending beyond BrM-TAMs to neu-

trophils, which has potential implications for the recruitment and

activation of other cell types within the TME, including T cells.

TAMs Are Poised toward an Immunomodulatory
Phenotype in BrMs
Although we found a significant accumulation of CD4+ and CD8+

T cells in BrMs versus IDH WT gliomas by FCM, this analysis of

dissociated tissue samples lacks structural information. We thus

performed neighborhood analysis of IF-phenotyped IDHWT and

BrM tissue sections to elucidate whether there is a spatial rela-

tionship between TAMs and CD3+ T cells in BrMs. In IDHWT gli-
1654 Cell 181, 1643–1660, June 25, 2020
omas, T-MG and T-MDMs mostly neighbored homotypic cells

while lacking T cells in their close vicinity (Figures 7A, 7B, and

S7A), possibly reflecting the general T cell sparseness in these

tumors. In contrast, both TAM populations neighbored T cells

far more frequently in BrMs, indicating the potential for interac-

tion (Figures 7A, 7B, and S7A).

We thus investigated the T cell activation state in BrMs in rela-

tion to unmatched healthy donor blood and also juxtaposed

them to the corresponding populations from IDH WT gliomas.

Compared with controls, CD4+ T cells from BrM showed evi-

dence of a hyporesponsive, anergic phenotype (Figure 7C),

whereas CD8+ T cells exhibited an exhaustion signature (Fig-

ure 7D), which usually occurs upon chronic activation, resulting

in upregulation of inhibitory receptors. These defective T cell

states can be caused by aberrant activation or T cell inhibition

by tumor cells and antigen-presenting cells in the TME and are

a major obstacle in treating cancers.

To delineate putative mechanisms in the BrM TME that may

drive these alterations, we probed the RNA-seq data from

CD45� cells, TAMs, and T cells (Figure 7E) for expression of acti-

vating and inhibitory immunomodulatory signals (Wei et al.,

2018). This revealed upregulation of various canonical T cell
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activators and co-activators but also mediators of inhibition in

T cells (PDCD1/PD1, CD28, and CTLA4), whereas T cell-inhibit-

ing and activating signals were detected in both TAM popula-

tions (CD274/PD-L1 and PDCD1LG2/PD-L2). Notably, we found

an upregulation of CD80, which has diverse roles in T cell activa-

tion because it heterodimerizes with CD274, provides co-stimu-

latory signals to T cells via CD28 and exerts inhibitory effects via

interaction with CTLA4 (Zhao et al., 2019), in both TAM popula-

tions compared with their normal references and IDH WT tumor

populations (Figure 7E). The potential contribution of TAMs to

metabolic immune evasion is also suggested by high expression

of IDO1 and IDO2 (Zhai et al., 2018) in BrM (Figure 7E).

We investigated additional immunomodulatory mediators us-

ing weighted gene correlation network analysis (WGCNA; Lang-

felder and Horvath, 2008) and correlated the resulting expres-

sion patterns with paired FCM abundance of CD4+ and CD8+

cells in a disease- and cell-type-specific manner. We identified

15 unique co-expression modules showing significant correla-

tion (p < 0.05) of their eigengenes (i.e., the first PC of the module

expression data) with any of the provided sample traits (Fig-

ure S7B). Among these, the ‘‘brown’’ WGCNAmodule correlated

with a specific BrM-MDM annotation and CD4+ T cell abun-

dance. ORA of this module revealed signals for pathways such

as coagulation and ECM modulation (Figure S7C) that affect

the availability and activity of growth factors and cytokines within

the TME (Mohan et al., 2020). We ranked genes bymodulemem-

bership strength and correlation with CD4+ T cell abundance,

which identified several factors with opposing immunomodula-

tory functions (Figure 7F). Although the receptors CD300E and

BST1 promote monocyte motility and survival (Isobe et al.,

2018; Ortolan et al., 2019), we also detected effectors of immu-

nosuppression, such as the actin-associated regulatory protein

CNN2, which negatively regulates macrophage motility and

phagocytic activity (Huang et al., 2008). The leukocyte immuno-

globulin-like receptor subfamily Bmembers LILRB2 and LILRB3,

which attenuate myeloid cell activation (van der Touw et al.,

2017), are also highly ranked genes within this module. Interest-

ingly, LILRB2 has been identified as a novel myeloid immune

checkpoint that limits antitumor immunity (Chen et al., 2018).

We also found evidence of effects on T cells; CD52, which, in

its soluble form, inhibits T cell function, was among the BrM-
Figure 7. TAMs Have a Wide Range of Immunomodulatory Functions i

(A) Representative IF images and corresponding cell type identification of non-im

P2RY12/CD68+, CD49D+), CD3+ (CD45+, P2RY12/CD68�, CD49D�/+, CD3+) and

omas and BrMs. Scale bars, 50 mm. Insets show quantifications per FOV.

(B) Neighborhood analyses of IDH WT glioma and BrM IF tissue sections. Row

observed nneighbors in the vicinity of MG or MDMs (nIDH WT = 9, nBrMs = 13).

(C and D) Gene set enrichment analysis (GSEA) of a T cell anergy gene set in CD4+

C2 collection.

(E) Gene expression heatmap of antigen-presenting cell (APC) and T cell activatin

of variance-stabilized counts across all cell types in IDHWT glioma and BrMs) an

and IDHWT glioma versus BrMs, absolute log2(fold change) > 1, adjusted p value

and BrMs. Gray tiles indicate expression below the threshold (normalized counts

(F) Scatterplot of module membership (correlation of expression to the module

abundance) of genes from the BrM-MDM-related gene co-expression network. H

(G) Expression of the indicated genes in matched bulk primary breast cancer and

***p < 0.001, ****p < 0.0001).

See also Figure S7.
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MDM module genes. The notion that BrM-MDMs undergo dis-

ease-specific alterations distinct from the primary extracranial

tumor is supported by upregulation of these genes (Figure 7G)

in our analysis of an external cohort of BrM samples compared

with their matched primary tumor tissue (Vare�slija et al., 2019).

DISCUSSION

Brain tumors, including glioblastoma and BrMs, confer some of

the poorest prognoses for patients with cancer, with survival

rates often measured in just months. Given the current dearth

of effective therapeutic options for these patients and the

modest effects of the various immunotherapies evaluated to

date, it is of critical urgency to identify novel targets for future

clinical evaluation. One potentially rich source of therapeutic tar-

gets is the TME. However, even though the TME is now widely

accepted as an important regulator of cancer progression and

therapeutic response, our knowledge of the brain TME is

restricted to individual brain tumor types or cellular compart-

ments and lacks comprehensive and integrative analysis.

In this study, we leveraged a diverse panel of analyses to

deeply interrogate the immune landscape of primary and meta-

static brain cancers. Through integration of multiparameter

FCM analyses, RNA-seq data, TME cell culture assays, protein

arrays, and spatial tissue characterization, we uncovered critical

insights into the composition and transcriptomes of the most

abundant immune cell populations in patient samples from IDH

mut andWT gliomas and BrMs originating from distinct extracra-

nial primary tumors.

By exploring the broad immune landscape, we uncovered

several pronounced differences between gliomas and BrMs

when directly compared side by side. In brain tumors, TAMs

are composed of tissue-resident MG and recruited MDMs, and

we found a significant shift in the ratio of MG to MDMs between

IDH mut and IDH WT gliomas. Additionally, gliomas contain an

abundance of TAMs, whereas T cells were much fewer, particu-

larly in IDHmut tumors. This confirms the notion that gliomas are

immunologically cold tumors (Jackson et al., 2019). Although

T cell sequestration in the bonemarrow has been observed in gli-

oma mouse models and following intracranial implantation of

brain-extrinsic tumors (Chongsathidkiet et al., 2018), our clinical
n BrMs

mune cells (CD45�), MG (CD45+, P2RY12/CD68+, CD49D�), MDMs (CD45+,

CD45+ other cells (CD45+, P2RY12/CD68�, CD49D�/+, CD3�) in IDH WT gli-

s show the mean proportion of each neighboring cell type per frequency of

T cells (C) and a T cell exhaustion gene set in CD8+ T cells (D) from the MSigDB

g and inhibitory signaling mediators (left panels, scaled to the expression range

d corresponding fold changes (right panels, BrMs versus non-tumor/reference

< 0.05) in CD45�MGandMDMs and CD4+ and CD8+ T cells in IDHWT gliomas

< 10); white tiles correspond to a non-significant fold change.

eigengene) and gene significance (correlation of expression to CD4+ T cell

ighly connected genes with immunomodulatory functions are annotated.

BrM tissues using the Vare�slija et al. (2019) dataset (Wilcoxon signed-rank test:



ll
Resource
BrM samples showed pronounced accumulation of lymphocytes

and neutrophils. This indicates that tumors that arise within the

brain indeed shape their TME differently than cancers that

metastasize from extracranial sites. Moreover, when exploring

BrMs that originate from distinct primary tumors, there were

additional differences; for example, in melanoma BrM samples,

the combined abundance of CD4+ and CD8+ T cells represented

the major immune compartment, whereas breast BrM samples

showed the highest neutrophil infiltration. These key differences

in the TME landscape, which are evident only when directly

juxtaposing different brain malignancies, mirror the efficacy of

immunotherapies that show promising efficacy in melanoma pa-

tients for controlling BrMs but with very modest effects to date in

treating T cell-excluded glioblastoma (Schalper et al., 2019).

We also uncovered complex multifaceted phenotypes for

TAMs across different brain tumors that extend beyond their nu-

merical abundance. T-MG and T-MDMs showed distinct tran-

scriptomic profiles and shared expression signatures, which

are additionally influenced by the underlying disease type (IDH

mut versus IDH WT glioma versus BrMs). A T-MDM signature

derived from IDHWT gliomas, consisting of macrophage activa-

tion markers, chemokine receptors, and cytokines, proved to

also be a predictor of patient survival in IDHmut gliomas. More-

over, analyses of T-MDMs indicated that even though these re-

cruited cells have the potential to process and present antigens,

and can be located proximally to T cells in BrMs, this potential is

evidently not sufficiently utilized within the brain TME. Orthog-

onal analyses from the diverse panel of experimental assays

used in this study reveal additional insights into potential mech-

anisms of immune suppression. These included our findings that

different TAM populations produced pro-inflammatory mole-

cules, negative regulators of myeloid cell activation, factors

associated with IPRES, IDO1 and IDO2 immune checkpoint in-

hibitors, and specific ECM components and proteases that

may collectively help sculpt an immune-suppressive niche.

Therefore, therapeutic strategies that alter the multifaceted phe-

notypes of TAMs (Kowal et al., 2019), rather than aiming to sim-

ply deplete all of these cells with potentially opposing functions,

should be considerably more effective.

Looking beyond TAMs, it will also be critical to assess the roles

of neutrophils, particularly in BrMs, where we found them to be

highly abundant, because they can act as potent immune-sup-

pressive cells, as indicated by studies of other organs (Coffelt

et al., 2016). Given the highly complex and multifaceted immune

landscape of brain cancers revealed in this study, it is clear that

rational combinations of TME-targeted agents will be critical to

avoid the emergence of adaptive resistance, incorporating pre-

clinical studies to help determine optimal combinations (Quail

et al., 2016). In sum, this rich resource is available for further inter-

rogation by the research community so that we can work collec-

tively to uncover novel therapeutic strategies that unleash the po-

tential of diverse cells in the TME to combat different brain

malignancies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

FCM: AF700 mouse monoclonal anti-human CD45

(clone HI30)

BioLegend Cat#304024; RRID:AB_493761

FCM: BV421 rat monoclonal anti-mouse/human CD11B

(clone M1/70)

BioLegend Cat#101251; RRID:AB_2562904

FCM: PE mouse monoclonal anti-human CD66B

(clone G10F5)

BioLegend Cat#305106; RRID:AB_2077857

FCM: AF488 mouse monoclonal anti-human CD14

(clone HCD14)

BioLegend Cat#325610; RRID:AB_830683

FCM: BUV737 mouse monoclonal anti-human CD16

(clone 3G8)

BD Cat#612786; RRID:AB_2833077

FCM: APC mouse monoclonal anti-human CD49D

(clone 9F10)

BioLegend Cat#304308; RRID:AB_2130041

FCM: BV605 mouse monoclonal anti-human CD11C

(clone 3.9)

BioLegend Cat#301636; RRID:AB_2563796

FCM: BV711 mouse monoclonal anti-human anti HLA-DR

(clone L243)

BioLegend Cat#307644; RRID:AB_2562913

FCM: PerCP/Cy5.5 mouse monoclonal anti-human CD3

(clone HIT3a)

BioLegend Cat#300328; RRID:AB_1575008

FCM: BV 650 mouse monoclonal anti-human anti CD4

(clone OKT4)

BioLegend Cat#317436; RRID:AB_2563050

FCM: PE mouse monoclonal anti-human CD25 (clone BC96) BioLegend Cat#302606; RRID:AB_314276

FCM: BV510 mouse monoclonal anti-human CD127 (clone

A019D5)

BioLegend Cat#351332; RRID:AB_2562304

FCM: PE/Cy7 mouse monoclonal anti-human CD8A

(clone HIT8a)

BioLegend Cat#300914; RRID:AB_314118

FCM: BUV563 mouse monoclonal anti-human CD20

(clone 2H7)

BD Cat#748456

FCM: BUV563 mouse monoclonal anti-human CD19 (clone

SJ25C1)

BD Cat#612916

FCM: PE/Dazzle mouse monoclonal anti-human CD56

(clone HDC56)

BioLegend Cat#318348; RRID:AB_2563564

FCM: PE mouse monoclonal anti-human P2RY12 (clone

S16001E)

BioLegend Cat#392103; RRID:AB_2716006

FCM: PE/Cy7 Mouse monoclonal anti-human CD68 (clone

Y1/82A)

BioLegend Cat#333816; RRID:AB_2562936

IF: Mouse monoclonal anti-human CD68 (clone KP1), 1:100

dilution

Abcam Cat#ab955; RRID:AB_307338

IF: Rat monoclonal anti-human CD49D (clone PS/2), 1:100

dilution

Abcam Cat#ab25247

IF: Rabbit polyclonal anti-human P2RY12, 1:600 dilution Sigma-Aldrich Cat#HPA014518; RRID:AB_2669027

IF: Goat polyclonal anti-human CD45, 1:100 dilution LSBio Cat#LS-B14248-300

IF: AF488 mouse monoclonal anti-human CD45 (clone HI30),

1:100 dilution

BioLegend Cat#304019; RRID:AB_493033

IF: AF488mousemonoclonal anti-human CD3 (clone UCHT1),

1:100 dilution

BioLegend Cat#300406; RRID:AB_314060

IF: Sheep polyclonal anti-human CD31, 1:200 dilution R&D Cat#AF806; RRID:AB_355617

IF: APC rat monoclonal anti Ki-67 (clone SolA15), 1:100

dilution

Thermo Fisher Scientific Cat#17-5698-82

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

IF: AF555 donkey anti-rabbit IgG 1:1000 dilution Thermo Fisher Scientific Cat#A31572, RRID:AB_162543

IF: AF555 donkey anti-mouse IgG, 1:500 dilution Thermo Fisher Scientific Cat#A32773; RRID:AB_2762848

IF: AF488 donkey anti-rat IgG, 1:500 dilution Thermo Fisher Scientific Cat#A21208; RRID:AB_141709

IF: AF647 donkey anti-rat IgG, 1:500 dilution abcam Cat#ab150155; RRID:AB_2813835

IF: DyLight755 donkey anti-goat IgG, 1:500 dilution Thermo Fisher Scientific Cat# SA5-10091; RRID:AB_2556671

IF: AF555 donkey anti-sheep IgG, 1:500 dilution Thermo Fisher Scientific Cat#A21436; RRID:AB_2535857

Biological Samples

Non-tumor, glioma and brain metastasis tissue Centre Hospitalier Universitaire

Vaudois, Lausanne, Switzerland

N/A

Non-tumor, glioma and brain metastasis tissue Memorial Sloan Kettering

Cancer Center, New York,

NY, USA

N/A

Healthy donor blood Transfusion Interrégionale

Croix-Rouge Suisse, Epalinges,

Switzerland

N/A

Healthy donor blood New York Blood Bank,

New York, NY, USA

N/A

Chemicals, Peptides, and Recombinant Proteins

DMEM-F12 (1:1), GlutaMAX GIBCO Cat#31331028

DMEM, high glucose, GlutaMAX, pyruvate GIBCO Cat#31966021

Penicillin/Streptomycin GIBCO Cat#15140122

Human recombinant CSF-1 R&D Systems Cat#216-MC-025

Ficoll-Paque Premium GE Cat#17-5442-02

Trizol Thermo Fisher Scientific Cat#15596018

Trizol LS Thermo Fisher Scientific Cat#10296028

Tween 20 Applied Chemicals Cat#A4974

Triton X-100 Applied Chemicals Cat#A4975

TNB Blocking Reagent Perkin Elmer Cat#FP1020

Fluorescence Mounting Medium Dako Cat#S302380

Critical Commercial Assays

Brain Tumor Dissociation Kit (P) Miltenyi Cat#130-095-942

Tumor Dissociation Kit, human Miltenyi Cat#130-095-929

Myelin Removal Beads Miltenyi Cat#130-096-733

CD14 MicroBeads, human Miltenyi Cat#130-050-201

Human TruStain FcX BioLegend Cat#422302

ZombieNIR Fixable Viability Kit BioLegend Cat#423106

High Capacity cDNA Reverse Transcription Kit Applied Biosystems Cat#4368814

TaqMan Universal PCR Master Mix Applied Biosystems Cat#4304437

Quantibody Array Q4000 ELISA Raybiotech Cat#QAH-CAA-4000-1

Deposited Data

RNAseq count data This paper https://joycelab.shinyapps.io/

braintime/

Human reference genome, hg38 Genomics Data Common https://gdc.cancer.gov/about-

data/data-harmonization-and-

generation/gdc-reference-files

TCGA LGG and GBM datasets Genomics Data Common https://portal.gdc.cancer.gov/

TOIL TGCA TARGET GTEx datasets Vivian et al., 2017 https://xenabrowser.net/datapages/

Ivy Glioblastoma Atlas Project RNA sequencing fata Puchalski et al., 2018 https://glioblastoma.alleninstitute.

org/static/download.html

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

STRING Protein-Protein-Interaction database, version 10.5 Szklarczyk et al., 2017 https://version-10-5.string-db.org/

cgi/download.pl

Molecular Signatures Database gene set collection Liberzon et al., 2015;

Subramanian et al., 2005

https://www.gsea-msigdb.org/

gsea/msigdb/

RNA sequencing count matrix from matched breast cancer

primaries and brain metastases

Vare�slija et al., 2019 https://github.com/npriedig

Oligonucleotides

See Table S7 N/A

Software and Algorithms

FlowJo, version 10.4 BD https://www.flowjo.com/

BBDuk, version 38.12 Joint Genome Institute https://jgi.doe.gov/data-and-tools/

bbtools/

STAR aligner, version 2.5.2b Dobin et al., 2013 https://github.com/alexdobin/STAR

R environment, version 3.5.0 R Core Team, 2018 https://www.r-project.org/

VIS Image Analysis, version 2019.7 Visiopharm https://www.visiopharm.com/

Other

gentleMACS Octo Dissociator Miltenyi Cat#130-095-937

gentleMACS C Tubes Miltenyi Cat#130-096-334

LS Columns Miltenyi Cat#130-042-401

SepMate-50 StemCell Cat#85450

PermaLife Cell Culture Bags OriGen Biomedical Cat#PL30-2G

LSR II flow cytometer BD N/A

Fortessa flow cytometer BD N/A

FACSAria III, flow cytometer & cell sorter BD N/A

Axio Scan.Z1 slide scanner Zeiss N/A

QuantStudio 6 Flex Applied Biosystems N/A

Omni Tissue Homogenizer (TH) Omni International Cat#TH220

ll
Resource
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to the Lead Contact, Johanna Joyce (johanna.joyce@unil.ch).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
RNA-seq count expression data generated during this study can be visualized and downloaded at https://joycelab.shinyapps.io/

braintime/. Due to patient privacy protection, the raw RNA-seq data will be made available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional

and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical

standards.

Informed consent was obtained from all individual participants included in this study. The collection of non-tumor and tumor tissue

samples at the Centre Hospitalier Universitaire Vaudois (CHUV, Lausanne, Switzerland) was approved by the Commission cantonale

d’éthique de la recherche sur l’être humain (CER-VD, protocol PB 2017-00240, F25 / 99). Sample collection at Memorial Sloan Ket-

tering Cancer Center (MSKCC, New York, NY, USA) was approved by the institutional review board (IRB, protocols #IRB #06-107,

#14-230). Non-tumor samples of cerebral cortex tissues were collected at CHUV during medically indicated surgical treatment of
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refractory epilepsy patients, and at MSKCC in normal brain distant from the tumor in patients with low-grade glioma or from post-

mortem samples collected through the rapid autopsy program with no history of brain malignancy.

Tissue specimenswere immediately collected from the operating room and processed as described below. All patient-related data

and unique identifiers were removed so that human samples were anonymized before any further processing.

Pathological review and molecular analysis of tumor samples was performed as part of standard clinical care at the respective

locations (CHUV or MSKCC). In all glioma samples subjected to RNA sequencing, the IDH1 and IDH2 mutation status was verified

by inspection of the reads from the CD45- population aligning to the IDH1 and IDH2 loci with the Integrative Genomics Viewer (IGV;

Robinson et al., 2017). For immunofluorescence sections the tumor diagnosis was confirmed independently, for all non-tumor sam-

ples, the absence of malignancy was equally confirmed by a pathologist.

Peripheral blood and buffy coats were obtained from the Transfusion Interrégionale, Croix-Rouge Suisse (Epalinges/Lausanne,

Switzerland), the New York Blood Center (New York, NY, USA), and healthy donors.

METHOD DETAILS

Clinical sample processing, flow cytometry (FCM) and fluorescence activated cell sorting (FACS)
Tissue specimens were washed in HBSS and macro-dissected under sterile conditions. Parts of the tissue were either immediately

frozen by submerging the sample in liquid nitrogen-cooled 2-methyl butane (Sigma-Aldrich) or OCT-embedded (Tissue-Tek) before

freezing for subsequent sectioning and immunofluorescence staining. OCT embedding was performed by placing the sample in a

freezing mold filled with OCT and then submerging the mold in 2-methyl butane cooled with dry ice.

The remaining tissue was further processed with either the Brain Tumor Dissociation Kit (Miltenyi) for non-tumor tissue and gli-

omas, or the Tumor Dissociation Kit for BrMs (Miltenyi) using the gentleMACS Octo Dissociator (Miltenyi). Myelin debris in cell sus-

pensions from non-tumor and glioma tissues was removed by incubating the cells with Myelin Removal Beads (Miltenyi) and mag-

netic-activated cell sorting (MACS) using LS columns (Miltenyi) according to the manufacturer’s instructions. All tissue suspensions

were filtered through a 40 mmfilter and underwent red blood cell lysis (BioLegend). Single cell suspensions were stained with a fixable

live-dead stain (Zombie NIR, BioLegend), FC-blocked for 10 min (Human TruStain FcX, BioLegend) and then incubated with direct

fluorophore-conjugated antibodies for 20 min at 4�C. All FCM antibodies were titrated in a lot-specific manner. Antibody details are

listed in the Key Resources Table. Cells were washedwith PBS +2% fetal bovine serum (FBS) +0.5mMEDTA and stored at 4�C in the

dark until FAC-sorting.

All FCM acquisition was completed on either a BD Fortessa or a BD LSR II device (BD), and cell sorting was performed on a

FACSAria III (BD) using FACSDiva (BD). Cells were sorted directly into Trizol LS (Thermo Fisher Scientific) and immediately snap

frozen with liquid nitrogen. Analysis of FCM data was performed with FlowJo (BD).

Tumor microenvironment-conditioned medium (TME-CM) generation
Single cell suspensions fromwhole tumor samples were resuspended in DMEM-F12 (1:1) +Glutamax (GIBCO) +10% FBS +1%peni-

cillin/streptomycin (P/S, GIBCO) and adjusted to a concentration of 23 106 cells/ml with 2 ml plated into each well of a 6-well plate

(TPP). The supernatant of these tissue cultures, containing cancer cells, immune cells etc. from the complex brain TME, was har-

vested at 24 hours after initial seeding, spun down to remove debris (300 g, 10 min) and stored at �80�C until further use.

In vitro generation of monocyte-derived macrophages (MDM) and TME-CM stimulation
Peripheral blood mononuclear cells were isolated from buffy coats of healthy donors with a Ficoll (GE) gradient using SepMate tubes

(StemCell) and monocytes selected by MACsorting with CD14 MicroBeads (Miltenyi). Monocytes were differentiated into macro-

phages by culture in Teflon-coated bags (OriGen) for 7 days in DMEM +GlutaMAX (GIBCO) +10% FBS +1% P/S with the addition

of 10 ng/ml recombinant human CSF-1 (R&D Systems).

DifferentiatedMDMswere plated at a density of 13 106 cells/well of a 6-well plate in DMEM+10%FBS +1%P/S +10 ng/ml CSF-1.

After cell attachment, MDMs were cultured in serum free medium for 6 hours before stimulation with TME-CM for 24 hours.

RNA isolation, cDNA synthesis and quantitative real-time PCR
TME-CM-stimulated MDMs were lysed with Trizol (Thermo Fisher Scientific), RNA was purified with Direct-zol columns (Zymo

Research), DNase treated and 1.0 mg of RNA was used for cDNA synthesis using the High Capacity cDNA Reverse Transcription

Kit (Applied Biosystems). An amount of cDNA equivalent to 5 ng total RNA was used for real-time PCR. For primer and probe details

see Table S6. Assayswere run in triplicate on aQuantStudio 6 Flex instrument (Applied Biosystems) using the TaqManUniversal PCR

Master Mix (Applied Biosystems) and expression was normalized to the average expression ofUbiquitin C (UBC) andRibosomal Pro-

tein L19 (RPL19) for each sample.

Immunofluorescence staining and microscopy image acquisition
10 mm cryostat sections were thawed, air-dried and fixed with ice-cold 100% methanol for 5 minutes. After rehydration with PBS,

sections were washed twice in PBS +0.2% Tween 20 (Applied Chemicals), permeabilized with PBS +0.2% Triton X-100 (Applied

Chemicals) for 3 hours and washed again with PBS +0.2% Tween 20. Blocking was performed with PBS +0.5% Tween 20 +1%
e4 Cell 181, 1643–1660.e1–e7, June 25, 2020
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TNBBlocking Reagent (Perkin Elmer), followed by incubation with primary antibody in the same buffer overnight at 4�C. Primary anti-

body information and dilutions are listed in the Key Resources table. Sections were washed with PBS +0.2% Tween 20 before incu-

bation with fluorophore-conjugated secondary antibodies at a dilution of 1:500 in PBS +0.5% Tween 20 +1% TNB Blocking

Reagent +1 mg/ml DAPI at room temperature. Directly-conjugated primary antibodies were employed where indicated after an initial

round of primary and secondary antibody staining, to avoid potential for cross reactivity. Finally, sections were washed with

PBS +0.2% Tween and mounted with Fluorescence Mounting Medium (Dako).

Stained tissue sections were imaged with an Axio Scan.Z1 slide scanner (Zeiss) equipped with a Colibri 7 LED light source (Zeiss)

using a Plan-Apochromat 20x/0.8 DIC M27 coverslip-corrected objective (Zeiss). All slides from the same staining panel were digi-

talized using identical acquisition settings.

Image analysis and cell type identification
Image quantification was performed using the VIS Image Analysis software (Visiopharm). For each staining panel a specific applica-

tion was created using the software’s authoring module. The tissue outline was detected after applying a 21 pixel mean filter. The

edges of the derived regions of interest were smoothened with the built-in function ‘‘close’’ and holes in the mask were filled using

the ‘‘fill holes’’ command. Aberrant signals resulting from e.g., dust particles, tissue folds or air bubbles were manually excluded from

these regions of interest. Nuclear classification was based on thewatershed signal of the DAPI staining and filtered by area to exclude

incomplete nuclei. The obtained nuclear label was expanded by 5 pixels to capture both nuclear and adjacent cytoplasmic fluores-

cent signal. Cell types were identified using a hierarchical decision tree with manually set thresholds. Finally, a representation of the

cytoplasm was created using the inbuilt growth algorithm with a maximum distance of 15 pixels from the nucleus. Vessel segmen-

tation was performed by creating a separate classifier based on pixel intensity of the CD31 signal. Nuclear classifiers were excluded a

priori and incorporated in the vessel label only when exceeding the threshold for CD31. Perivascular niches (PVNs) were established

by generating an ROI around vessels at a distance of 20 mm. All object-based phenotyping result tables were exported as csv files for

further analysis within the R environment.

Protein isolation and enzyme-linked immunosorbent assay (ELISA)
Frozen tissues were weighed and homogenized on ice with an Omni Tissue Homogenizer (Omni International) in 10 mL of RIPA lysis

buffer (Thermo Fisher Scientific) +cOmplete Protease Inhibitor (Roche Diagnostics) per mg of tissue. The homogenate was gently

agitated on ice for 10 minutes, centrifuged at 10.000 g for 5 minutes at 4�C and the supernatant collected. The protein concentration

was determined using a Bradford assay (Bio-Rad) and adjusted to 1 mg/ml. Samples were shipped to Raybiotech (Peachtree Corners)

for quantitative analysis with the multiplexed Quantibody Array Q4000 ELISA.

RNA sequencing (RNA-seq)
RNA was isolated by chloroform extraction and isopropanol precipitation. RNA sequencing libraries were generated with the

SMART-Seq preparation kit (CloneTech) and fragmented with the Nextera XT kit (Illumina). Paired end, 100 or 150 base pair, and

single end, 100 base pair, sequencing was performed by Genewiz (South Plainfield, New Jersey, USA) on an Illumina HiSeq 2500

(Illumina).

Reads were adaptor trimmed and quality clipped using BBDuk (version 38.12; https://sourceforge.net/projects/bbmap/). Trimmed

reads were mapped to the Genomic Data Commons (GDC) GRCh38.d1.vd1 reference sequence using the STAR aligner (version

2.5.2b, Dobin et al., 2013) in two-pass mode with parameters corresponding to the GDC RNA-seq alignment workflow. Transcript

abundance was estimated using the corresponding GDC reference gtf file. A raw count matrix was produced and differential

gene expression was assessed with DESeq2 using an absolute log2 fold change of 1 and a false discovery rate of 0.01 when con-

trasting to reference samples, and 0.05 for within tumor contrasts (Love et al., 2014).

Bioinformatic analysis environment
All bioinformatic analyses were performed within the R environment (version 3.5.0, R Core Team 2018).

Gene set-centered analyses
The Molecular Signatures Database (MSigDB, version 6.1, Liberzon et al., 2015; Subramanian et al., 2005) was used as the main

source for gene set-based analyses.

Over-representation was assessed with the goseq R package (Young et al., 2010) for differentially expressed genes to correct for

gene length bias, otherwise the hypergeometric test was employed. For individual samples, gene set enrichment was estimated with

the Gene Set Variation Analysis R package (GSVA, Hänzelmann et al., 2013) using the ‘‘gsva’’ function. Gene set enrichment analysis

(GSEA) was evaluated with the R package fgsea (https://github.com/ctlab/fgsea) using the maximum likelihood log fold changes

determined by DESeq2 as the ranking metric.

Deconvolution of Toil-RNA sequencing data
Toil-processed (Vivian et al., 2017), DESeq2-standardized gene expression data and matching phenotype data from the TCGA and

Genotype-Tissue Expression Project (GTEx) databases were downloaded from the UCSC Xena platform and filtered to include only
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low-grade glioma ‘‘TCGA-LGG’’ and high-grade "TCGA-GBM’’ and ‘‘frontal cortex’’ GTEx samples to integrate bulk glioma expres-

sion data with unmatched non-tumor samples. MG- and MDM-specific marker genes were derived by identifying differentially ex-

pressed genes in these two populations versus all other sorted populations in a pairwise fashion, determining the intersect and

ranking the resulting genes by their fold change versus the CD45- population. The 20 highest ranked genes were then used as

cell type-specific marker genes. Deconvolution of MG- and MDM-proportions in tumor and non-tumor sample expression data

was done with the EPIC R package (Racle et al., 2017) using these marker genes and providing the expression data from the sorted

populations as reference profiles. As the exact amount of RNAwithin the estimated cell types is not known, this parameter was set to

1 when running the deconvolution.

Leading edge metagene (LEM) analysis
To capture biologically meaningful patterns of gene expression within the differentially expressed genes the LEM approach (Godec

et al., 2016) was employed: (a) GSEA was performed using theMSigDBC7 collection as described above, (b) the leading edge genes

of the significant gene sets were arranged into a genes by gene sets matrix with the shrunken fold changes as the entries, (c) this

matrix was clustered using non-negative matrix factorization with the R package NMF (Gaujoux and Seoighe, 2010), (d) genes

with a small coefficient in eachmetagene were filtered based on the 95th quantile of a fitted exponential distribution of the coefficients

and (e) each gene with a coefficient above the threshold was assigned to the metagene where it had the highest coefficient.

Protein-Protein-Interaction network building
Version 11.0 of the STRING database (Szklarczyk et al., 2017) was downloaded from the consortium’s website and gene identifiers

from RNA-seq were mapped to Ensembl Protein IDs using the provided accessory data. The resulting interaction data was filtered to

contain only interactions with a high confidence STRING combined score (i.e., > 700). For network layout calculation the combined

score was used as an edge weight.

Nearest neighbor distance measurements and neighborhood analysis of IF data
Nearest neighbor distances from MG and MDM to vessels in IDH wt glioma samples were calculated using the spatstat R package

(Baddeley et al., 2015). Statistical significance was assessed by fitting amixed effects model with the cell type as the fixed effect, and

the clinical sample ID as the random effect using the R package lme4 (Bates et al., 2015).

Neighbors for each individual cell were determined based on their occurrence within a range of 5 mmoutside of the radius of the cell

(calculated based on the area). This was used to tabulate the number of neighbors and their cell type for each cell within the tissue

section.

Cell type abundance estimation in spatial Ivy Glioblastoma Atlas Project (GAP) data
The micro-dissected Ivy GAP (Puchalski et al., 2018) RNA-seq RSEM count data and sample annotation containing anatomical loca-

tion were downloaded from the Ivy GAP website (https://glioblastoma.alleninstitute.org/static/download.html) and normalized using

DESeq2. The relative abundance of cell types was estimated by deriving marker genes through a multinomial logistic regression

model on the normalized expression data of the FAC-sorted cell types of interest in IDH WT tumors and then computing the

GSVA enrichment scores in the Ivy GAP samples.

Survival analysis of the IDH wt MDM-specific gene signature in gliomas
The harmonized TCGA low-grade and high-grade HTSeq hg38 count data and clinical data was accessed from the GDC repository

using the TCGAbiolinks R package (Colaprico et al., 2016). Datasets were pre-processed to remove outliers and normalized using the

functions provided by TCGAbiolink before merging. Subsequent analyses were performed including only samples where an anno-

tation of the IDH mutation status was available. Cell type-specific gene signatures were derived by training a multinomial logistic

regression model with an elastic-net penalty to separate between MG and MDMs along IDH status with the ‘‘glmnet’’ R package

(Friedman et al., 2010). A mean-centered expression matrix of all MG and MDMs expression data in gliomas and BrMs, subset by

genes that were upregulated in tumors versus non-tumor tissue or healthy controls, served as the input matrix. The strength of

the penalty was determined by a 10-fold cross-validation of the l parameter. For survival analysis, GSVA enrichment scores of these

cell type-specific gene signatures were estimated and used to divide samples into tertiles. Kaplan-Meier survival curves were

computed using the ‘‘survfit’’ function. Survival curves were compared with a log-rank test between the individual levels and multi-

variate Cox regression analysis was performed with the ‘‘coxph’’ function.

Self-organizing map (SOM) clustering
Variance stabilized counts from sorted populations of interest from IDHmut, IDHWTglioma and BrM samples were filtered with the R

package HTSFilter (Rau et al., 2013) to ensure removal of genes with a low, constant expression. The resulting matrix of genes and

samples was used as input for the SOM neural network building, which was performed with the oposSOM R package (Löffler-Wirth

et al., 2015) with a map space of 503 50. To investigate associations between the sample phenotype and the SOMmetagenes, the

tumor type and cell type were provided as group labels.
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Weighted gene correlation network analysis (WGCNA)
TheWGCNA (Langfelder andHorvath, 2008) R packagewas used to identify co-regulated genes associatedwith aMG- orMDM-BrM

phenotype. A variance stabilized, batch-corrected count matrix of MG and MDM samples was filtered with the R package HTSFilter

(Rau et al., 2013) yielding input expression data with 15826 genes and 56 samples. WGCNA standard parameters were changed as

follows: the soft-thresholding power was raised to 7, the minModuleSize was increased to 50, ‘‘bicor’’ was used to calculate the cor-

relation, the network type was set to ‘‘signed hybrid’’ and a dendrogram cut height of 0.25 was used for module merging. This yielded

20 modules whose eigengene, i.e., the first principal component, was tested for correlation to the provided sample information, i.e.,

tumor- and cell-type and abundance as determined by FCM.

Expression analysis of external dataset of matched primary breast cancer and BrMs
RNA-seq raw count data from patient-matched primary breast tumors and corresponding BrMs (Vare�slija et al., 2019) were down-

loaded (https://github.com/npriedig/jnci_2018) and transformed using DESeq2. The statistical significance of gene expression

changes between primary tumors and BrMs was assessed with a two-tailed Wilcoxon signed-rank test on the variance-stabilized

counts.

Plotting and graph generation
Plots were created using the ggplot2 R package (Wickham, 2016) and the ggpubr (https://cran.r-project.org/web/packages/

ggpubr/), survminer (https://cran.r-project.org/web/packages/survminer/), ggraph (https://cran.r-project.org/web/packages/

ggraph/) and ggcyto extensions (Van et al., 2018). Annotated heatmaps were drawn with the pheatmap R package (https://cran.

r-project.org/web/packages/pheatmap/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Summary data are presented as mean ± standard error of the mean (SEM) or Tukey boxplots using ‘‘ggplot2.’’ Numerical data was

analyzed using the statistical tests notedwithin the corresponding sections of the article. Hierarchical clustering was performed using

Ward’s method with 1-Pearson correlation coefficient as the distance metric unless noted otherwise. P values were annotated as

follows: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001, ns > 0.05.
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Supplemental Figures

Figure S1. FACS of Cell Populations and RNA-Seq, Related to Figure 1

(A) Flow cytometry (FCM) plots illustrating the gating strategy employed during FAC-sorting of immune cell populations in non-tumor and tumor tissue (for cell

typemarkers, see Table S2). (B) tSNE plot of gene expression data (500most variable genes) from all sorted cell populations (n = 226) across the complete clinical

cohort (MG = microglia, MDM = monocyte-derived macrophages, reference = unmatched healthy blood and in vitro generated MDMs).

See also Table S2.
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(legend on next page)
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Figure S2. MG and MDM Marker Expression, Related to Figure 2

(A) Normalized counts (log10 transformed) of MG and MDMmarker genes in sorted CD49Dlow MG and CD49Dhigh MDM populations across both non-tumor and

tumor tissues (reference = healthy donor in vitro generated MDMs). (B) Percentage of CD49Dlow MG and CD49Dhigh MDMs positive for P2RY12 and CD68 as

determined by FCM in relation to the total number of MG/MDMs in non-tumor (n = 8) and tumor tissue (nIDH mut = 6, nIDH WT = 6, nBrM = 9). (C) Single channel and

merged immunofluorescence (IF) images of CD45, CD68, P2RY12 and CD49D stainings which were employed to delineate MG and MDMs. The last column

shows the resulting Visiopharm cell type assignments for quantitative analyses (MG (CD45+, P2RY12+/CD68+, CD49D-), MDM (CD45+, P2RY12+/CD68+,

CD49D+), non-immune cells (CD45-) and non-TAM-immune cells (CD45+, P2RY12-/CD68-, CD49D-/+). Scale bars represent 100mm. (D) Scatterplots of the

abundance of MG and MDMs as determined by IF versus FCM in non-tumor (n = 4) and tumor tissues (nIDH mut = 13, nIDH WT = 14, nBrM = 18) processed

independently from the same individual samples. Pearson’s correlation coefficient and significance are indicated at the top of each plot. (E) Heatmap of human

MG- and MDM-specific gene set expression used for deconvolution across FAC-sorted population samples from all disease types.
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(legend on next page)

ll
Resource



Figure S3. Analysis of DEGs and TAM Activation Patterns, Related to Figure 3

(A) Summary of contrasts applied when performing differential gene expression (DEG) analysis in MG and MDMs in gliomas (regardless of IDH status) and BrMs

(from all primaries) in comparison to normal controls (non-tumor brainMG and in vitro differentiatedMDMs respectively) with the corresponding log2(fold-change)

versus -log10(adjusted p value) volcano plots. (B) Euler plot of the number of differentially expressed genes (DEG, log2(fc) > 1, p.adj < 0.01) that overlap inMG and

MDMs as shown in (A). (C) Molecular Signatures Database (MSigDB) ‘‘Hallmark’’ gene set collection overrepresentation analysis (ORA) in genes upregulated in

both gliomas and BrMs versus non-tumor brain tissue or healthy donors in MDMs and MG in MDMs and MG. Dot sizes reflect the fraction of gene set members

found within the analyzed DEGs, and dot color indicates cell type. (D) Heatmap of fold changes of macrophage M1 and M2 polarization marker genes (absolute

log2(fc) > 1, p.adj < 0.05) in MDMs and MG in gliomas and BrMs. Blank tiles indicate the lack of significant fold change. Genes are annotated with their canonical

stimuli and the associated polarization phenotype. (GC = glucocorticoid, Ic = immune complexes, IFNg = Interferon gamma, IL10 = interleukin 10, IL4 = interleukin

4, LPS = lipopolysaccharide, TGFb = transforming growth factor beta). (E) Overlap between leading edge metagenes (LEMs) in MG and MDMs in gliomas and

BrMs. Tile fill color indicates significance of overlap determined by hypergeometric testing (-log10(p.adj)). (F) String-DB protein-protein-interaction network of the

intersect from IFN Type-1 group 2 modules from LEMs ‘‘BrM-MG 1,’’ ‘‘Glioma MDM 1’’ and ‘‘BrM-MDM 4.’’ Genes selected for validation through qRT-PCR are

highlighted in red (corresponding data shown in Figure 3E). Node size indicates the centrality, while edge width corresponds to the String-DB interaction score

(only scores > 700, i.e., with a high degree of confidence have been included).
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Figure S4. IDH WT-Specific Alterations in TAMs, Related to Figure 4

(A) Representative IF image and cell type quantification below of non-immune cells (CD45-), non-TAM immune cells (CD45+, P2RY12/CD68-, CD49D+/-), MG

(CD45+, P2RY12/CD68+, CD49D) and MDM (CD45+, P2RY12/CD68+, CD49D+) and vessels (CD31+) in IDH WT glioma. Dashed line indicates the border of the

perivascular niche (PVN), scale bar represents 100mm. (B) Heatmap of cell-type gene set variation analysis (GSVA) enrichment scores of micro-dissected Ivy

Glioblastoma Atlas Project samples (dataset from Puchalski et al., 2018). Columns are ordered by anatomical location, rows have been z-scored. (C) Gene set

enrichment analysis (GSEA) results ofMSigDB ‘‘C2’’ antigen processing and cross-presentation associated pathways in T-MDMs versus T-MG in IDHWTglioma.

(D) Heatmap of MDM IDHWT gene set expression in sorted MG and MDMs from IDHmut and WT glioma samples. Columns are ordered by IDH status and cell

type, expression values have been z-scored. (E) Plot of z-scored MDM IDH WT signature scores in the TCGA glioma dataset. Subjects are ranked by their

enrichment score (small amount of random variation added for readability) and the IDH status is indicated by color. (F) Kaplan-Meier estimator of survival in the

combined TCGA glioma cohort based on the enrichment for a cell type-specific T-MDM signature (see Figure S2E). (G) ORA of ‘‘innate anti-PD-1 resistance’’

(IPRES) signatures within DEG fromMG- andMDMs in IDHWT gliomas DEGs (versusMG from IDHmut tumors) with tile fill indicating the -log10 of the adjusted p

value. (H) GSVA of IPRES signatures in CD45- cells, MG, and MDMs from IDH mut and IDH WT gliomas. Columns are ordered by cell type, rows (z-score) have

been hierarchically clustered.
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Figure S5. Protein Concentration in Bulk Tumor Tissues and Relation to Cell-Type-Associated SOM Spots, Related to Figure 5

(A) Bulk tissue protein concentrations of indicated proteins in non-tumor brain (n = 3), gliomas (n = 14) and BrMs (n = 12). Color indicates disease type and IDH

status. (B) Heatmap of self-organizing map (SOM) spot metagene expression across the analyzed samples. Rows were z-scored and have been hierarchically

clustered, columns were ordered by cell type, disease type and IDH mutation status.
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Figure S6. Gene Expression Analysis in BrM-TAMs, Related to Figure 6

(A) Overlap of the number of differentially expressed genes (DEG, log2(fc) > 1, p.adj < 0.05) in MG and (B) MDMs in the indicated comparisons. BrM-specific gene

sets are highlighted in gray within each cell type. The intersect of highlighted BrM-MG and BrM-MDM sets contains 87 genes. (C) GSEA of the ‘‘Biocarta IL-6

pathway’’ in BrM-MG versus -MDM and the (D) ‘‘Naba core matrisome’’ gene set from the MSigDB ‘‘C2’’ collection in BrM-MDM versus -MG. (E) Expression

(log10-transformed normalized counts) of neutrophil-recruiting chemokines and receptors in sortedMG,MDMs and neutrophil populations from IDHWTandBrM

samples.
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Figure S7. Correlation of WGCNA Modules with External Traits and Module Pathway ORA, Related to Figure 7

(A) Representative immunofluorescence images in IDHWT gliomas and BrMs. Scale bars = 100mm, boxed area is shown in higher magnification in Figure 7A. (B)

Heatmap of the weighted gene correlation network analysis (WGCNA) module eigengene (= first principal component of expression data, columns, module

columns are labeled with a color code) correlation to the traits (rows, cell type and disease, abundance of CD4+ or CD8+ T cells in % of CD45+). Values inside the

cells state Pearson’s r and the associated p value. (C) ‘‘Brown’’ BrM-MDM module MSigDB ‘‘C2CP’’ ORA results (p value < 0.01) enrichment map network

visualization. Node size represents p value, edge thickness reflects overlap of genes between gene sets.
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