46 research outputs found

    Landau damping in thin films irradiated by a strong laser field

    Full text link
    The rate of linear collisionless damping (Landau damping) in a classical electron gas confined to a heated ionized thin film is calculated. The general expression for the imaginary part of the dielectric tensor in terms of the parameters of the single-particle self-consistent electron potential is obtained. For the case of a deep rectangular well, it is explicitly calculated as a function of the electron temperature in the two limiting cases of specular and diffuse reflection of the electrons from the boundary of the self-consistent potential. For realistic experimental parameters, the contribution of Landau damping to the heating of the electron subsystem is estimated. It is shown that for films with a thickness below about 100 nm and for moderate laser intensities it may be comparable with or even dominate over electron-ion collisions and inner ionization.Comment: 15 pages, 2 figure

    Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters

    Full text link
    The dependencies of the melting point and the lattice parameter of supported metal nanoclusters as functions of clusters height are theoretically investigated in the framework of the uniform approach. The vacancy mechanism describing the melting point and the lattice parameter shifts in nanoclusters with decrease of their size is proposed. It is shown that under the high vacuum conditions (p<10^-7 torr) the essential role in clusters melting point and lattice parameter shifts is played by the van der Waals forces of cluster-substrate interation. The proposed model satisfactorily accounts for the experimental data.Comment: 6 pages, 3 figures, 1 tabl

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС элСктроискровых ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… с использованиСм элСктродов TiC–NiCr ΠΈ TiC–NiCr–Eu2O3

    Get PDF
    The study covers coatings obtained on 40Kh steel substrates by electro-spark deposition (ESD) using TiC–NiCr and TiC–NiCr– Eu2O3 electrodes. Coatings were deposited by the Alier-Metal 303 unit in argon environment under the normal pressure using direct and opposite polarity. The structure, elemental and phase composition of electrodes and coatings were studied using X-ray phase analysis, scanning electron microscopy, energy dispersive spectroscopy, glow discharge optical emission spectroscopy, and optical profilometry. Mechanical and tribological properties of coatings were determined by nanoindentation and testing according to the Β«pin-diskΒ» scheme including high-temperature conditions in the range of 20–500 Β°C. The tests conducted include abrasive wear tests using the Calowear tester, impact resistance tests using the CemeCon impact tester, and tests for gas and electrochemical corrosion resistance. Test results showed that electrodes contain titanium carbide, nickel-chromium solid solution, and europium oxide in case of a doped sample. Coatings exhibit the same phase composition but solid solution is formed on the iron base. Coatings with the Eu2O3 additive do not differ significantly in structural characteristics, hardness, friction coefficient, and exceed the base coatings in terms of their abrasive resistance, repeated impact resistance, heat and corrosion resistance. There was an increase in impact resistance by 1.2–2.0 times, a decrease in corrosion current by more than 20 times, and an oxidation index by almost 2 times during the transition to doped coatings.Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ покрытия, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… ΠΈΠ· стали 40Π₯ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроискрового лСгирования с использованиСм элСктродов TiC–NiCr ΠΈ TiC–NiCr–Eu2O3. ΠŸΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΡ наносились с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ установки Β«Alier-Metal 303Β» Π² срСдС Π°Ρ€Π³ΠΎΠ½Π° ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ прямой ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ полярности. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π°, элСмСнтный ΠΈ Ρ„Π°Π·ΠΎΠ²Ρ‹ΠΉ составы элСктродов ΠΈ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ Π±Ρ‹Π»ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ посрСдством Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, растровой элСктронной микроскопии, энСргодиспСрсионной спСктроскопии, оптичСской эмиссионной спСктроскопии Ρ‚Π»Π΅ΡŽΡ‰Π΅Π³ΠΎ разряда ΠΈ оптичСской ΠΏΡ€ΠΎΡ„ΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΈ трибологичСскиС свойства ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ наноиндСнтирования ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ испытаний ΠΏΠΎ схСмС Β«ΡΡ‚Π΅Ρ€ΠΆΠ΅Π½ΡŒβ€“Π΄ΠΈΡΠΊΒ», Π² Ρ‚ΠΎΠΌ числС ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 20–500 Β°Π‘. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования Π½Π° Π°Π±Ρ€Π°Π·ΠΈΠ²Π½Ρ‹ΠΉ износ с использованиСм ΠΏΡ€ΠΈΠ±ΠΎΡ€Π° Β«Calowear-testerΒ», ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΊ динамичСским воздСйствиям с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ установки Β«CemeCon impact-testerΒ» ΠΈ ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΊ Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΠΈ элСктрохимичСской ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ элСктроды содСрТат ΠΊΠ°Ρ€Π±ΠΈΠ΄ Ρ‚ΠΈΡ‚Π°Π½Π°, Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΉ раствор никСля Π² Ρ…Ρ€ΠΎΠΌΠ΅ ΠΈ оксид Свропия Π² случаС Π΄ΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Π°. ΠŸΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΡ Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ Ρ„Π°Π·Ρ‹, ΠΎΠ΄Π½Π°ΠΊΠΎ Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΉ раствор формировался Π½Π° основС ΠΆΠ΅Π»Π΅Π·Π°. ΠŸΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΡ с Π΄ΠΎΠ±Π°Π²ΠΊΠΎΠΉ Eu2O3 ΠΏΠΎ структурным характСристикам, твСрдости, коэффициСнту трСния сущСствСн- Π½ΠΎ Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ, Π° ΠΏΠΎ стойкости ΠΊ Π°Π±Ρ€Π°Π·ΠΈΠ²Π½ΠΎΠΌΡƒ износу ΠΈ ΠΊ цикличСским ΡƒΠ΄Π°Ρ€Π½Ρ‹ΠΌ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ°ΠΌ, ΠΆΠ°Ρ€ΠΎ- ΠΈ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ стойкости прСвосходили Π±Π°Π·ΠΎΠ²Ρ‹Π΅ покрытия. Наблюдались ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ стойкости ΠΊ ΡƒΠ΄Π°Ρ€Π½Ρ‹ΠΌ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ°ΠΌ Π² 1,2–2,0 Ρ€Π°Π·Π°, ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΠΊΠ° ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π² 20 Ρ€Π°Π· ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ показатСля окислСния ΠΏΠΎΡ‡Ρ‚ΠΈ Π² 2 Ρ€Π°Π·Π° ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΊ Π΄ΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ покрытиям

    Guided electromagnetic discharge pulses driven by short intense laser pulses:Characterization and modeling

    Get PDF
    Strong electromagnetic pulses (EMPs) are generated from intense laser interactions with solid-density targets and can be guided by the target geometry, specifically through conductive connections to the ground. We present an experimental characterization by time- and spatial-resolved proton deflectometry of guided electromagnetic discharge pulses along wires including a coil, driven by 0.5 ps, 50 J, 1019 W/cm2 laser pulses. Proton-deflectometry allows us to time-resolve first the EMP due to the laser-driven target charging and then the return EMP from the ground through the conductive target stalk. Both EMPs have a typical duration of tens of ps and correspond to currents in the kA-range with electric-field amplitudes of multiple GV/m. The sub-mm coil in the target rod creates lensing effects on probing protons due to both magnetic- and electric-field contributions. This way, protons of the 10 MeV-energy range are focused over cm-scale distances. Experimental results are supported by analytical modeling and high-resolution numerical particle-in-cell simulations, unraveling the likely presence of a surface plasma, in which parameters define the discharge pulse dispersion in the non-linear propagation regime.</p

    Guided Electromagnetic Discharge Pulses Driven by Short Intense Laser Pulses: Characterisation and Modelling

    Full text link
    Strong electromagnetic pulses (EMP) are generated from intense laser interactions with solid-density targets, and can be guided by the target geometry, specifically through conductive connections to the ground. We present an experimental characterization, by time- and spatial-resolved proton deflectometry, of guided electromagnetic discharge pulses along wires including a coil, driven by 0.5 ps, 50 J, 1e19 W/cm2 laser pulses. Proton-deflectometry data allows to time-resolve first the EMP due to the laser-driven target charging and then the return EMP from the ground through the conductive target stalk. Both EMPs have a typical duration of tens of ps and correspond to currents in the kA-range with electric-field amplitudes of multiple GV/m. The sub-mm coil in the target rod creates lensing effects on probing protons, due to both magnetic- and electric-field contributions. This way, protons of 10 MeV-energy range are focused over cm-scale distances. Experimental results are supported by analytical modelling and high-resolution numerical particle-in-cell simulations, unraveling the likely presence of a surface plasma, which parameters define the discharge pulse dispersion in the non-linear propagation regime

    ВозмоТности ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ спСктрофотомСтрии для опрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠ»Π΅Π½ΠΎΠΊ Π½Π° однослойных структурах

    Get PDF
    Single-layer Ta-Si-C-N films on fused quartz substrates were made by direct current magnetron sputtering. The structural perfection of the film was investigated by X-ray diffraction analysis, scanning electron microscopy and optical emission spectroscopy of glow discharge. The optical parameters of the films were determined by the method of multi-angle spectrophotometry. Spectral dependences of the transmission coefficients of substrates and structures at normal light incidence in the wavelength range of 200β€”2500 nm are obtained. It is shown that the transmission spectrum of the sample has an oscillating character, which is caused by interference phenomena characteristic of layered structures. Spectral dependences of the reflection coefficients of films and substrates in the wavelength range of 200β€”2500 nm at small angles of incidence of light are obtained. By the magnitude of the difference between the reflection coefficient at the maximum of the interference of the film and the corresponding reflection coefficient of the substrate at the same wavelength, it is shown that the absorption in the film is low. A formula is obtained for determining the absorption coefficient of a film from the measured parameters. Based on the experimental data obtained, spectral dependences of the absorption coefficients of the substrate, structure and film are constructed. The method of reflection at two angles of incidence, based on the determination of the position of the interference extremes on the spectral dependences of the reflection coefficients, calculated discrete values of the refractive coefficients in the wavelength range 400β€”1200 nm. The obtained values are approximated by the Cauchy equation. The film thickness was calculated, which was d = 1046 nm Β± 13%. Spectral dependences of the film attenuation indices with and without reflection are constructed. A summary table is presented with the obtained values of the refractive coefficients and absorption indices with and without reflection.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΌΠ°Π³Π½Π΅Ρ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ распылСния постоянного Ρ‚ΠΎΠΊΠ° ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ‹ однослойныС ΠΏΠ»Π΅Π½ΠΊΠΈ Taβ€”Siβ€”Cβ€”N Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… ΠΈΠ· ΠΏΠ»Π°Π²Π»Π΅Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Ρ€Ρ†Π°. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎΠ΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎ ΠΏΠ»Π΅Π½ΠΎΠΊ исслСдовано ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ рСнтгСноструктурного Π°Π½Π°Π»ΠΈΠ·Π°, ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной микроскопии ΠΈ оптичСской эмиссионной спСктроскопии Ρ‚Π»Π΅ΡŽΡ‰Π΅Π³ΠΎ разряда. ΠžΠΏΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ спСктрофотомСрии. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ зависимости коэффициСнтов пропускания ΠΏΠΎΠ΄Π»ΠΎΠΆΠ΅ΠΊ ΠΈ структур ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ свСта Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½ 200β€”2500 Π½ΠΌ. Показано, Ρ‡Ρ‚ΠΎ спСктр коэффициСнтов пропускания ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡΡ†ΠΈΠ»Π»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ обусловлСн ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ явлСниями, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌΠΈ для слоистых структур.Β Π˜Π·ΠΌΠ΅Ρ€Π΅Π½Ρ‹ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ зависимости коэффициСнтов отраТСния ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΈ ΠΏΠΎΠ΄Π»ΠΎΠΆΠ΅ΠΊ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½ 200β€”2500 Π½ΠΌ ΠΏΡ€ΠΈ ΠΌΠ°Π»Ρ‹Ρ… ΡƒΠ³Π»Π°Ρ… падСния свСта. По Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ Ρ€Π°Π·Π½ΠΈΡ†Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ коэффициСнтом отраТСния Π² максимумС ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ коэффициСнтом отраТСния ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ ΠΏΡ€ΠΈ этой ΠΆΠ΅ Π΄Π»ΠΈΠ½Π΅ Π²ΠΎΠ»Π½Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΠ΅ Π² ΠΏΠ»Π΅Π½ΠΊΠ΅ ΠΌΠ°Π»ΠΎ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния коэффициСнта поглощСния ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΏΠΎ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ. На основании ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ расчСтных Π΄Π°Π½Π½Ρ‹Ρ… построСны ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ зависимости коэффициСнтов поглощСния ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ, структуры ΠΈ ΠΏΠ»Π΅Π½ΠΊΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ отраТСния ΠΏΡ€ΠΈ Π΄Π²ΡƒΡ… ΡƒΠ³Π»Π°Ρ… падСния, основанном Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ полоТСния ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… экстрСмумов Π½Π° ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… зависимостях коэффициСнтов отраТСния, рассчитаны дискрСтныС значСния коэффициСнтов прСломлСния Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½ 400β€”1200 Π½ΠΌ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ аппроксимированы ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Коши. Рассчитана Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° ΠΏΠ»Π΅Π½ΠΊΠΈ, которая составила dΠΏΠ». = 1046 Π½ΠΌ Β± 13 %. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½Ρ‹ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ зависимости ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ослаблСния ΠΏΠ»Π΅Π½ΠΊΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΈ Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° отраТСния. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π° сводная Ρ‚Π°Π±Π»ΠΈΡ†Π° с ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ значСниями коэффициСнтов прСломлСния ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ поглощСния с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΈ Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° отраТСния

    Guided electromagnetic discharge pulses driven by short intense laser pulses : Characterization and modeling

    Get PDF
    Strong electromagnetic pulses (EMPs) are generated from intense laser interactions with solid-density targets and can be guided by the target geometry, specifically through conductive connections to the ground. We present an experimental characterization by time- and spatial-resolved proton deflectometry of guided electromagnetic discharge pulses along wires including a coil, driven by 0.5 ps, 50 J, 1019 W/cm2 laser pulses. Proton-deflectometry allows us to time-resolve first the EMP due to the laser-driven target charging and then the return EMP from the ground through the conductive target stalk. Both EMPs have a typical duration of tens of ps and correspond to currents in the kA-range with electric-field amplitudes of multiple GV/m. The sub-mm coil in the target rod creates lensing effects on probing protons due to both magnetic- and electric-field contributions. This way, protons of the 10 MeV-energy range are focused over cm-scale distances. Experimental results are supported by analytical modeling and high-resolution numerical particle-in-cell simulations, unraveling the likely presence of a surface plasma, in which parameters define the discharge pulse dispersion in the non-linear propagation regime
    corecore