24 research outputs found

    Characteristics and in vitro response of thin hydroxyapatite-titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions

    Get PDF
    The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of ascorbic acid and Ξ²-glycerophosphate was significantly increased, especially in HA nanoparticle-doped coatings

    Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности литичСского стафилококкового Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° ph20 ΠΈ литичСского Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° синСгнойной ΠΏΠ°Π»ΠΎΡ‡ΠΊΠΈ ph57 ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡ… ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π² ортопСдичСскиС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ конструкции ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° (костного Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°)

    Get PDF
    Background: The problem of bacterial colonization of implants used in medical practice continues to be relevant regardless of the material of the implant. Particular attention deserves polymeric implants, which are prepared ex tempore from polymethyl methacrylate, for example - duting orthopedic surgical interventions (so-called "bone cement"). The protection of such implants by antibiotic impregnation is subjected to multiple criticisms, therefore, as an alternative to antibiotics, lytic bacteriophages with a number of unique advantages can be used - however, no experimental studies have been published on the possibility of impregnating bacteriophages into polymethyl methacrylate and their antibacterial activity assessment under such conditions.Aims: to evaluate the possibility of physical placement of bacteriophages in polymethylmethacrylate and to characterize the lytic antibacterial effect of two different strains of bacteriophages when impregnated into polymer carrier ex tempore during the polymerization process in in vitro model.Materials and methods: Β First stage - Atomic force microscopy (AFM) of polymethyl methacrylate samples for medical purposes was used to determine the presence and size of caverns in polymethyl methacrylate after completion of its polymerization at various reaction Β temperatures (+6…+25Β°C and +18…+50Β°C).The second stage was performed in vitro and included an impregnation of two different bacteriophage strains (phage ph20 active against S. aureus and ph57 active against Ps. aeruginosa) into polymethyl methacrylate during the polymerization process, followed by determination of their antibacterial activity.Results: ACM showed the possibility of bacteriophages placement in the cavities of polymethyl methacrylate - the median of the section and the depth of cavities on the outer surface of the polymer sample polymerized at +18…+50Β°C were 100.0 and 40.0 nm, respectively, and on the surface of the transverse cleavage of the sample - 120.0 and 100.0 nm, respectively, which statistically did not differ from the geometric dimensions of the caverns of the sample polymerized at a temperature of +6…+25Β°C.The study of antibacterial activity showed that the ph20 bacteriophage impregnated in polymethyl methacrylate at +6…+25Β°C lost its effective titer within the first six days after the start of the experiment, while the phage ph57 retained an effective titer for at least 13 days.Conclusion: the study confirmed the possibility of bacteriophages impregnation into medical grade polymethyl methacrylate, maintaining the effective titer of the bacteriophage during phage emission into the external environment, which opens the way for the possible application of this method of bacteriophage delivery in clinical practice. It is also assumed that certain bacteriophages are susceptible to aggressive influences from the chemical components of "bone cement" and / or polymerization reaction products, which requires strict selection of bacteriophage strains that could be suitable for this method of delivery.ОбоснованиС. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ…Β Π²Β ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΎΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ‚ ΠΎΡΡ‚Π°Π²Π°Ρ‚ΡŒΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ, нСзависимо ΠΎΡ‚ использованного для ΠΈΡ… изготовлСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. ΠžΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ внимания Π·Π°ΡΠ»ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅Β Π²Β ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»ΡΡŽΡ‚ exΒ tempore (ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ надобности) ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π°, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΡ€ΠΈ ортопСдичСских хирургичСских Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°Ρ… (Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ костный Ρ†Π΅ΠΌΠ΅Π½Ρ‚). Π—Π°Ρ‰ΠΈΡ‚Π° Ρ‚Π°ΠΊΠΈΡ… ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈΒ Π²Β Π½ΠΈΡ… Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠΎΠ² подвСргаСтся мноТСствСнной ΠΊΡ€ΠΈΡ‚ΠΈΠΊΠ΅, поэтому в качСствС Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρ‹ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ°ΠΌ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ литичСскиС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΈ, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ рядом ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… прСимущСств, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ возмоТности ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Β ΠΈΒ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности в таких условиях в литСратурС Π½Π΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ. ЦСль исслСдования ― ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ физичСского размСщСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π΅Β ΠΈ Π²Β ΠΌΠΎΠ΄Π΅Π»ΠΈΒ inΒ vitroΒ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ литичСский Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ эффСкт Π΄Π²ΡƒΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² ΠΏΡ€ΠΈ ΠΈΡ… ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈΒ Π²Β ΠΈΠ·Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°Π΅ΠΌΡ‹ΠΉ exΒ tempore ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒ Π½Π° этапС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ.Β ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΠ΅Ρ€Π²Ρ‹ΠΌ этапом Π±Ρ‹Π»Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π°Β Π°Ρ‚ΠΎΠΌΠ½ΠΎ-силовая микроскопия (АБМ) ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° мСдицинского назначСния для выяснСния наличия и размСров ΠΊΠ°Π²Π΅Ρ€Π½, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ послС Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси (+6…+25 Β°CΒ ΠΈΒ +18…+50 Β°C). Π’Ρ‚ΠΎΡ€Ρ‹ΠΌ этапом inΒ vitro Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° импрСгнация Π΄Π²ΡƒΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² (ph20, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎΒ Π²Β ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ StaphylococcusΒ aureus,Β ΠΈΒ ph57, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎΒ Π²Β ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ PseudomonasΒ aeruginosa)Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ Π½Π° этапС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈΒ ΡΒ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΡ… Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности.Β Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.Β Π’Β Ρ…ΠΎΠ΄Π΅ выполнСния АБМ установлСна Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ размСщСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΊΠ°Π²Π΅Ρ€Π½Π°Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π°: ΠΌΠ΅Π΄ΠΈΠ°Π½Π° сСчСния и глубины ΠΊΠ°Π²Π΅Ρ€Π½ Π½Π° внСшнСй повСрхности ΠΎΠ±Ρ€Π°Π·Ρ†Π°, ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ +18…+50 Β°C, составила 100,0Β ΠΈΒ 40,0Β Π½ΠΌ соотвСтствСнно,Β Π°Β Π½Π° повСрхности ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ скола образца ― 120,0Β ΠΈΒ 100,0Β Π½ΠΌ соотвСтствСнно, Ρ‡Ρ‚ΠΎ статистичСски Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΎΡΡŒ ΠΎΡ‚ гСомСтричСских Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΊΠ°Π²Π΅Ρ€Π½ ΠΎΠ±Ρ€Π°Π·Ρ†Π°, ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ +6…+25 Β°C. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠΏΡ€Π΅Π³Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΈ +6…+25 Β°CΒ Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ стафилококковый Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Β ph20 ΡƒΡ‚Ρ€Π°Ρ‚ΠΈΠ» эффСктивный Ρ‚ΠΈΡ‚Ρ€ ΡƒΠΆΠ΅Β Π²Β Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… ΡˆΠ΅ΡΡ‚ΠΈ суток с момСнта Π½Π°Ρ‡Π°Π»Π° экспСримСнта, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ синСгнойный Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Β ph57 сохранял эффСктивный Ρ‚ΠΈΡ‚Ρ€ ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΒ Π²Β Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 13 сут.Β Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. В исслСдовании Π±Ρ‹Π»Π° ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ мСдицинского назначСния с поддСрТаниСм эффСктивного Ρ‚ΠΈΡ‚Ρ€Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° ΠΏΡ€ΠΈ Π΅Π³ΠΎ эмиссии Π²ΠΎ внСшнюю срСду, Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ ΠΏΡƒΡ‚ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ примСнСния Ρ‚Π°ΠΊΠΎΠ³ΠΎ способа доставки бактСриофагов в клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅. Π’Π°ΠΊΠΆΠ΅ сдСланы прСдполоТСния о вСроятной подвСрТСнности Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² агрСссивным воздСйствиям со стороны химичСских ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² «костного Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Β» ΠΈ/ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ строгого ΠΎΡ‚Π±ΠΎΡ€Π° ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹Ρ… для ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ способа доставки ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²

    Comparative investigation of Al- and Cr-doped TiSiCN coatings

    No full text
    The aim of this work was a comparative investigation of the structure and properties of Al- and Cr-doped TiSiCN coatings deposited by magnetron sputtering of composite TiAlSiCN and TiCrSiCN targets produced by self-propagating high-temperature synthesis method. Based on X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy data, the Al- and Cr-doped TiSiCN coatings possessed nanocomposite structures (Ti,Al)(C,N)/a-(Si,C) and (Ti,Cr)(C,N)/a-SiCxNy/a-C with cubic crystallites embedded in an amorphous matrix. To evaluate the thermal stability and oxidation resistance, the coatings were annealed either in vacuum at 1000, 1100, 1200, and 1300°C or in air at 1000°C for 1h. The results obtained show that the hardness of the Al-doped TiSiCN coatings increased from 41 to 46GPa, reaching maximum at 1000°C, and then slightly decreased to 38GPa at 1300°C. The Cr-doped TiSiCN coatings demonstrated high thermal stability up to 1100°C with hardness above 34GPa. Although both Al- and Cr-doped TiSiCN coatings possessed improved oxidation resistance up to 1000°C, the TiAlSiCN coatings were more oxidation resistant than their TiCrSiCN counterparts. The TiCrSiCN coatings showed better tribological characteristics both at 25 and 700°C and superior cutting performance compared with the TiAlSiCN coatings. © 2011 Elsevier B.V.The work was fulfilled due to financial support from the Ministry of Education and Science of the Russian Federation (Contracts 02.740.11.0859 and П1248). The authors thank A.V. Levanov (Moscow State University) for Raman spectroscopy investigations and T.B. Sagalova (MISIS) for help with XRD measurements.Peer Reviewe

    Mechanical properties of decellularized extracellular matrix coated with TiCaPCON film

    No full text
    For the first time the surface of decellularized extracellular matrix (DECM) was modified via deposition of a multicomponent bioactive nanostructured film for improvement of the DECM's mechanical properties. TiCaPCON films were deposited onto the surface of intact and decellularized ulna, radius, and humerus bones by magnetron sputtering of TiC<SUB>0.5</SUB> + 10%Ca<SUB>3</SUB>(PO<SUB>4</SUB>)<SUB>2</SUB> and Ti targets in a gaseous mixture of Ar + N<SUB>2</SUB>. The film structure was studied using x-ray diffraction, scanning and transmission electron microscopy, and Raman spectroscopy. The films were characterized in terms of their wettability, as well as adhesion strength to the intact bone and DECM substrates. The mechanical properties of TiCaPCON-coated samples were investigated by compression testing. In addition, humerus bones were evaluated during three-point bending tests. The results indicate that the tightly adhered films, uniformly covering the DECM surfaces, possessed hydrophilic characteristics. A maximum improvement in mechanical properties (250%) was observed for coated humerus samples. In case of decellularized radius bones, the compressive strength also increased by 150% after coating. The positive role of TiCaPCON films was less noticeable for ulna bones because of large data scattering. These results clearly indicate that the films acted as a rigid frame that increased the material compressive strength. Compared with intact bones, fracture in the TiCaPCON-coated DECM samples was characterized by rarer and larger cracks generated under higher critical loads. As a result, the samples were crushed into several large pieces and numerous tiny fragments. Although the film deposition increased the bone stiffness, the bending tests revealed that the flexural strength of the coated samples became 20%–25% lower than the strength of the film-free samples
    corecore