35 research outputs found
A reminder of the association between Clostridium septicum and colonic adenocarcinoma
We present the case of a patient, with previously unknown liver metastases, presenting with a liver abscess and Clostridium septicum septicaemia. C. septicum is known to be associated with both malignancy and immunosuppression and therefore in patients where this organism is isolated, efforts must be made to exclude an occult underlying malignancy or haematological disorder
Set optimization - a rather short introduction
Recent developments in set optimization are surveyed and extended including
various set relations as well as fundamental constructions of a convex analysis
for set- and vector-valued functions, and duality for set optimization
problems. Extensive sections with bibliographical comments summarize the state
of the art. Applications to vector optimization and financial risk measures are
discussed along with algorithmic approaches to set optimization problems
An efficient application of goal programming to tackle multiobjective problems with recurring fitness landscapes
Many real-world applications require decision-makers to assess the quality of solutions while considering multiple conflicting objectives. Obtaining good approximation sets for highly constrained many objective problems is often a difficult task even for modern multiobjective algorithms. In some cases, multiple instances of the problem scenario present similarities in their fitness landscapes. That is, there are recurring features in the fitness landscapes when searching for solutions to different problem instances. We propose a methodology to exploit this characteristic by solving one instance of a given problem scenario using computationally expensive multiobjective algorithms to obtain a good approximation set and then using Goal Programming with efficient single-objective algorithms to solve other instances of the same problem scenario. We use three goal-based objective functions and show that on benchmark instances of the multiobjective vehicle routing problem with time windows, the methodology is able to produce good results in short computation time. The methodology allows to combine the effectiveness of state-of-the-art multiobjective algorithms with the efficiency of goal programming to find good compromise solutions in problem scenarios where instances have similar fitness landscapes
Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres
Cells respond to DNA double-strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single-stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3-K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50-dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage
TRAF6 and IRF7 Control HIV Replication in Macrophages
The innate immune system recognizes virus infection and evokes antiviral responses which include producing type I interferons (IFNs). The induction of IFN provides a crucial mechanism of antiviral defense by upregulating interferon-stimulated genes (ISGs) that restrict viral replication. ISGs inhibit the replication of many viruses by acting at different steps of their viral cycle. Specifically, IFN treatment prior to in vitro human immunodeficiency virus (HIV) infection stops or significantly delays HIV-1 production indicating that potent inhibitory factors are generated. We report that HIV-1 infection of primary human macrophages decreases tumor necrosis factor receptor-associated factor 6 (TRAF6) and virus-induced signaling adaptor (VISA) expression, which are both components of the IFN signaling pathway controlling viral replication. Knocking down the expression of TRAF6 in macrophages increased HIV-1 replication and augmented the expression of IRF7 but not IRF3. Suppressing VISA had no impact on viral replication. Overexpression of IRF7 resulted in enhanced viral replication while knocking down IRF7 expression in macrophages significantly reduced viral output. These findings are the first demonstration that TRAF6 can regulate HIV-1 production and furthermore that expression of IRF7 promotes HIV-1 replication