9 research outputs found

    The effective potential for the SU(5)timesU(1) model. I

    Get PDF
    The effective potential in the minimal flipped SU(5) Ă— U(1) model is calculated and the proton life-time in this model is discussed. Results are compared with those from the orthodox SU(5) GUT model

    Development of extracellular matrix supported 3D culture of renal cancer cells and renal cancer stem cells

    Get PDF
    Novel experimental conditions of cancer cell line culture have evolved throughout the recent years, with significantly growing interest in xeno-free, serum-free and three-dimensional culture variants. The choice of proper culture media may enable to mimic tumor microenvironment and promotion of cancer stem cells proliferation. To assess whether stem-like phenotype inducing media may be applied in renal cancer stem cell research, we performed a widespread screening of 13 cell culture media dedicated for mesenchymal cells, stem cells as well as mesenchymal stem cells. We have also screened extracellular matrix compounds and selected optimal RCC 3D—ECM supported culture model. Our results revealed that 786-O as well as HKCSCs cell line cultures in xeno-free media (NutriStem/StemXvivo) and laminin coated plates provide a useful tool in RCC cancer biology research and at the same time enable effective drug toxicity screening. We propose bio-mimic 3D RCC cell culture model with specific low-serum and xeno-free media that promote RCC cell viability and stem-like phenotype according to the tested genes encoding stemness factors including E-cadherin, N-cadherin, HIF1, HIF2, VEGF, SOX2, PAX2 and NESTIN

    mTORC2 mediates CXCL12-induced angiogenesis

    No full text
    The chemokine CXCL12, through its receptor CXCR4, positively regulates angiogenesis by promoting endothelial cell (EC) migration and tube formation. However, the relevant downstream signaling pathways in EC have not been defined. Similarly, the upstream activators of mTORC2 signaling in EC are also poorly defined. Here we demonstrate for the first time that CXCL12 regulation of angiogenesis requires mTORC2 but not mTORC1. We find that CXCR4 signaling activates mTORC2 as indicated by phosphorylation of serine 473 on Akt, and does so through a G-protein- and PI3K-dependent pathway. Significantly, independent disruption of the mTOR complexes by drugs or multiple independent siRNAs reveals that mTORC2, but not mTORC1, is required for microvascular sprouting in a 3D in vitro angiogenesis model. Importantly, in a mouse model both tumor angiogenesis and tumor volume are significantly reduced only when mTORC2 is inhibited. Finally, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), which is a key regulator of glycolytic flux, is required for microvascular sprouting in vitro, and its expression is reduced in vivo when mTORC2 is targeted. Taken together, these findings identify mTORC2 as a critical signaling nexus downstream of CXCL12/CXCR4 that represents a potential link between mTORC2, metabolic regulation and angiogenesis

    The Role of Hypoxia and Cancer Stem Cells in Renal Cell Carcinoma Pathogenesis

    No full text
    corecore