43 research outputs found
Assessing Repetitive Negative Thinking Using Categorical and Transdiagnostic Approaches: A Comparison and Validation of Three Polish Language Adaptations of Self-Report Questionnaires
Repetitive negative thinking (RNT) is a transdiagnostic process involved in the risk, maintenance, and relapse of serious conditions including mood disorders, anxiety, eating disorders, and addictions. Processing mode theory provides a theoretical model to assess, research, and treat RNT using a transdiagnostic approach. Clinical researchers also often employ categorical approaches to RNT, including a focus on depressive rumination or worry, for similar purposes. Three widely used self-report questionnaires have been developed to assess these related constructs: the Ruminative Response Scale (RRS), the Perseverative Thinking Questionnaire (PTQ), and the Mini-Cambridge Exeter Repetitive Thought Scale (Mini-CERTS). Yet these scales have not previously been used in conjunction, despite useful theoretical distinctions only available in Mini-CERTS. The present validation of the methods in a Polish speaking population provides psychometric parameters estimates that contribute to current efforts to increase reliable replication of theoretical outcomes. Moreover, the following study aims to present particular characteristics and a comparison of the three methods. Although there has been some exploration of a categorical approach, the comparison of transdiagnostic methods is still lacking. These methods are particularly relevant for developing and evaluating theoretically based interventions like concreteness training, an emerging field of increasing interest, which can be used to address the maladaptive processing mode in RNT that can lead to depression and other disorders. Furthermore, the translation of these measures enables the examination of possible cross-cultural structural differences that may lead to important theoretical progress in the measurement and classification of RNT. The results support the theoretical hypothesis. As expected, the dimensions of brooding, general repetitive negative thinking, as well as abstract analytical thinking, can all be classified as unconstructive repetitive thinking. The particular characteristics of each scale and potential practical applications in clinical and research are discussed
Mutations in the COL1A1 and COL1A2 genes associated with osteogenesis imperfecta (OI) types I or III
Although over 85% of osteogenesis imperfecta (OI) cases are associated with mutations in the procollagen type I genes (COL1A1 or COL1A2), no hot spots for the mutations were associated with particular clinical phenotypes. Eight patients that were studied here, diagnosed with OI by clinical standards, are from the Polish population with no ethnic background indicated. Previously unpublished mutations were found in six out of those eight patients. Genotypes for polymorphisms (Sp1 - rs1800012 and PvuII - rs412777), linked to bone formation and metabolism were determined. Mutations were found in exons 2, 22, 50 and in introns 13 and 51 of the COL1A1 gene. In COL1A2, one mutation was identified in exon 22. Deletion type mutations in COL1A1 that resulted in OI type I had no effect on collagen type I secretion, nor on its intracellular accumulation. Also, a single base substitution in I13 (c.904-9 G>T) was associated with the OI type I. The OI type III was associated with a single base change in I51 of COL1A1, possibly causing an exon skipping. Also, a missense mutation in COL1A2 changing Gly→Cys in the central part of the triple helical domain of the collagen type I molecule caused OI type III. It affected secretion of the heterotrimeric form of procollagen type I. However, no intracellular accumulation of procollagen chains could be detected. Mutation in COL1A2 affected its incorporation into procollagen type I. The results obtained shall help in genetic counseling of OI patients and provide a rational support for making informed, life important decisions by them and their families
T-cell subpopulations αβ and γδ in cord blood of very preterm infants : The influence of intrauterine infection
Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPreterm infants are very susceptible to infections. Immune response mechanisms in this group of patients and factors that influence cord blood mononuclear cell populations remain poorly understood and are considered insufficient. However, competent immune functions of the cord blood mononuclear cells are also described. The aim of this work was to evaluate the T-cell population (CD3+) with its subpopulations bearing T-cell receptor (TCR) αβ or TCR γδ in the cord blood of preterm infants born before 32 weeks of gestation by mothers with or without an intrauterine infection. Being a pilot study, it also aimed at feasibility check and assessment of an expected effect size. The cord blood samples of 46 infants age were subjected to direct immunofluorescent staining with monoclonal antibodies and then analyzed by flow cytometry. The percentage of CD3+ cells in neonates born by mothers with diagnosis of intrauterine infection was significantly lower than in neonates born by mothers without infection (p = 0.005; Mann-Whitney U test). The number of cells did not differ between groups. Infection present in the mother did not have an influence on the TCR αβ or TCR γδ subpopulations. Our study contributes to a better understanding of preterm infants' immune mechanisms, and sets the stage for further investigations.Peer reviewedFinal Published versio
Mutations in COL1A1 and COL1A2 Genes Associated with Osteogenesis Imperfecta (OI) Types I or III.
Although over 85% of osteogenesis imperfecta (OI) cases are associated with mutations in the procollagen type I genes (COL1A1 or COL1A2), no hot spots for the mutations were associated with particular clinical phenotypes. Eight patients that were studied here, diagnosed with OI by clinical standards, are from the Polish population with no ethnic background indicated. Previously unpublished mutations were found in six out of those eight patients. Genotypes for polymorphisms (Sp1 - rs1800012 and PvuII - rs412777), linked to bone formation and metabolism were determined. Mutations were found in exons 2, 22, 50 and in introns 13 and 51 of the COL1A1 gene. In COL1A2, one mutation was identified in exon 22. Deletion type mutations in COL1A1 that resulted in OI type I had no effect on collagen type I secretion, nor on its intracellular accumulation. Also, a single base substitution in I13 (c.904-9 G>T) was associated with the OI type I. The OI type III was associated with a single base change in I51 of COL1A1, possibly causing an exon skipping. Also, a missense mutation in COL1A2 changing Gly→Cys in the central part of the triple helical domain of the collagen type I molecule caused OI type III. It affected secretion of the heterotrimeric form of procollagen type I. However, no intracellular accumulation of procollagen chains could be detected. Mutation in COL1A2 affected its incorporation into procollagen type I. The results obtained shall help in genetic counseling of OI patients and provide a rational support for making informed, life important decisions by them and their families