756 research outputs found

    Ubc9 fusion-directed SUMOylation identifies constitutive and inducible SUMOylation

    Get PDF
    Constitutive and induced protein SUMOylation is involved in the regulation of a variety of cellular processes, such as regulation of gene expression and protein transport, and proceeds mainly in the nucleus of the cell. So far, several hundred SUMOylation targets have been identified, but presumably they represent only a part of the total of proteins which are regulated by SUMOylation. Here, we used the Ubc9 fusion-dependent SUMOylation system (UFDS) to screen for constitutive and induced SUMOylation of 46 randomly chosen proteins with proven or potential nuclear localization. Fourteen new UFDS-substrate proteins were identified of which eight could be demonstrated to be SUMOylated in a UFDS-independent manner in vivo. Of these, three were constitutively SUMOylated (FOS, CRSP9 and CDC37) while the remaining five substrates (CSNK2B, TAF10, HSF2BP, PSMC3 and DRG1) showed a stimulation-dependent SUMOylation induced by the MAP3 kinase MEKK1. Hence, UFDS is appropriate for the identification and characterization of constitutive and, more importantly, induced protein SUMOylation in vivo

    DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells

    Get PDF
    Within 2–3 months of in vitro culture-expansion, mesenchymal stromal cells (MSC) undergo replicative senescence characterized by cell enlargement, loss of differentiation potential and ultimate growth arrest. In this study, we have analyzed DNA methylation changes upon long-term culture of MSC by using the HumanMethylation27 BeadChip microarray assessing 27 578 unique CpG sites. Furthermore, we have compared MSC from young and elderly donors. Overall, methylation patterns were maintained throughout both long-term culture and aging but highly significant differences were observed at specific CpG sites. Many of these differences were observed in homeobox genes and genes involved in cell differentiation. Methylation changes were verified by pyrosequencing after bisulfite conversion and compared to gene expression data. Notably, methylation changes in MSC were overlapping in long-term culture and aging in vivo. This supports the notion that replicative senescence and aging represent developmental processes that are regulated by specific epigenetic modifications

    Fatigue, depression, and pain in multiple sclerosis: How neuroinflammation translates into dysfunctional reward processing and anhedonic symptoms

    Get PDF
    Fatigue, depression, and pain affect the majority of multiple sclerosis (MS) patients, which causes a substantial burden to patients and society. The pathophysiology of these symptoms is not entirely clear, and current treatments are only partially effective. Clinically, these symptoms share signs of anhedonia, such as reduced motivation and a lack of positive affect. In the brain, they are associated with overlapping structural and functional alterations in areas involved in reward processing. Moreover, neuroinflammation has been shown to directly impede monoaminergic neurotransmission that plays a key role in reward processing. Here, we review recent neuroimaging and neuroimmunological findings, which indicate that dysfunctional reward processing might represent a shared functional mechanism fostering the symptom cluster of fatigue, depression, and pain in MS. We propose a framework that integrates these findings with a focus on monoaminergic neurotransmission and discuss its therapeutic implications, limitations, and perspectives

    CSF Protein Concentration Shows No Correlation With Brain Volume Measures

    Get PDF
    Background: CSF protein concentrations vary greatly among individuals. Accounting for brain volume may lower the variance and increase the diagnostic value of CSF protein concentrations.Objective: To determine the relation between CSF protein concentrations and brain volume.Methods: Brain volumes (total intracranial, gray matter, white matter volumes) derived from brain MRI and CSF protein concentrations (total protein, albumin, albumin CSF/serum ratio) of 29 control patients and 497 patients with clinically isolated syndrome or multiple sclerosis were studied.Finding: We found significant positive correlations of CSF protein concentrations with intracranial, gray matter, and white matter volumes. None of the correlations remained significant after correction for age and sex.Conclusion: Accounting for brain volume derived from brain MRI is unlikely to improve the diagnostic value of protein concentrations in CSF

    High-mobility group box 1 protein, receptor for advanced glycation end products and nucleosomes increases after marathon

    Full text link
    Background: Prolonged and strenuous exercise has been linked to potential exercise-induced myocardial damages. One potential key to unmask the discussed underlying mechanisms of this subclinical cardiac damage could be markers of immunogenic cell damage (ICD). We investigated the kinetics of high-mobility group box 1 protein (HMGB1), soluble receptor for advanced glycation end products (sRAGE), nucleosomes, high sensitive troponin T (hs-TnT) and high sensitive C-reactive protein (hs-CRP) before and up to 12 weeks post-race and described associations with routine laboratory markers and physiological covariates. Methods: In our prospective longitudinal study, 51 adults (82% males; 43 ± 9 years) were included. All participants underwent a cardiopulmonary evaluation 10-12 weeks pre-race. HMGB1, sRAGE, nucleosomes, hs-TnT and, hs-CRP were analysed 10-12 weeks prior, 1-2 weeks before, immediately, 24 h, 72 h, and 12 weeks post-race. Results: HMGB1, sRAGE, nucleosomes and hs-TnT increased significantly from pre- to immediately post-race (0.82-2.79 ng/mL; 1132-1388 pg/mL; 9.24-56.65 ng/mL; 6-27 ng/L; p < 0.001) and returned to baseline within 24-72 h. Hs-CRP increased significantly 24 h post-race (0.88-11.5 mg/L; p < 0.001). Change in sRAGE was positively associated with change in hs-TnT (rs = 0.352, p = 0.011). Longer marathon finishing time was significantly associated with decreased levels of sRAGE [-9.2 pg/mL (β = -9.2, SE = 2.2, p < 0.001)]. Conclusion: Prolonged and strenuous exercise increases markers of ICD immediately post-race, followed by a decrease within 72 h. An acute marathon event results in transient alterations of ICD, we assume that this is not solely driven by myocyte damages

    Two-dimensional semiconductors in the regime of strong light-matter coupling

    Get PDF
    C.S. thanks the ERC for support within the project Unlimit2D. M.M.G. is grateful to the Russian Science Foundation (Grant No. 17-12-01265). T.K. gratefully acknowledges financial support by the German science foundation (DFG) via grants KO3612/1-1 and KO3612/3-1. S.H. is grateful for support within the EPSRC “Hybrid Polaritonics” Grant (EP/M025330/1). B.U. thanks ANR 2D-vdW-Spin and ERC Grant No. 306719 for financial support.The optical properties of transition metal dichalcogenide monolayers are widely dominated by excitons, Coulomb-bound electron–hole pairs. These quasi-particles exhibit giant oscillator strength and give rise to narrow-band, well-pronounced optical transitions, which can be brought into resonance with electromagnetic fields in microcavities and plasmonic nanostructures. Due to the atomic thinness and robustness of the monolayers, their integration in van der Waals heterostructures provides unique opportunities for engineering strong light-matter coupling. We review first results in this emerging field and outline future opportunities and challenges.Publisher PDFPeer reviewe

    Optical coherence tomography angiography indicates subclinical retinal disease in neuromyelitis optica spectrum disorders

    Get PDF
    Background: Neuromyelitis optica spectrum disorders (NMOSD) are neuroinflammatory diseases of the central nervous system. Patients suffer from recurring relapses and it is unclear whether relapse-independent disease activity occurs and whether this is of clinical relevance. Objective: To detect disease-specific alterations of the retinal vasculature that reflect disease activity during NMOSD. Methods: Cross-sectional analysis of 16 patients with NMOSD, 21 patients with relapsing-remitting multiple sclerosis, and 21 healthy controls using retinal optical coherence tomography (OCT), optical coherence tomography angiography (OCT-A), measurement of glial fibrillary acidic protein (GFAP) serum levels, and assessment of visual acuity. Results: Patients with NMOSD but not multiple sclerosis revealed lower foveal thickness (FT) (p = 0.02) measures and an increase of the foveal avascular zone (FAZ) (p = 0.02) compared to healthy controls independent to optic neuritis. Reduced FT (p = 0.01), enlarged FAZ areas (p = 0.0001), and vessel loss of the superficial vascular complex (p = 0.01) were linked to higher serum GFAP levels and superficial vessel loss was associated with worse visual performance in patients with NMOSD irrespective of optic neuritis. Conclusion: Subclinical parafoveal retinal vessel loss might occur during NMOSD and might be linked to astrocyte damage and poor visual performance. OCT-A may be a tool to study subclinical disease activity during NMOSD

    Association of retinal vessel pathology and brain atrophy in relapsing-remitting multiple sclerosis

    Get PDF
    BackgroundOptical coherence tomography angiography (OCTA) allows non-invasive assessment of retinal vessel structures. Thinning and loss of retinal vessels is evident in eyes of patients with multiple sclerosis (MS) and might be associated with a proinflammatory disease phenotype and worse prognosis. We investigated whether changes of the retinal vasculature are linked to brain atrophy and disability in MS.Material and methodsThis study includes one longitudinal observational cohort (n=79) of patients with relapsing-remitting MS. Patients underwent annual assessment of the expanded disability status scale (EDSS), timed 25-foot walk, symbol digit modalities test (SDMT), retinal optical coherence tomography (OCT), OCTA, and brain MRI during a follow-up duration of at least 20 months. We investigated intra-individual associations between changes in the retinal architecture, vasculature, brain atrophy and disability. Eyes with a history of optic neuritis (ON) were excluded.ResultsWe included 79 patients with a median disease duration of 12 (interquartile range 2 - 49) months and a median EDSS of 1.0 (0 - 2.0). Longitudinal retinal axonal and ganglion cell loss were linked to grey matter atrophy, cortical atrophy, and volume loss of the putamen. We observed an association between vessel loss of the superficial vascular complex (SVC) and both grey and white matter atrophy. Both observations were independent of retinal ganglion cell loss. Moreover, patients with worsening of the EDSS and SDMT revealed a pronounced longitudinal rarefication of the SVC and the deep vascular complex.DiscussionON-independent narrowing of the retinal vasculature might be linked to brain atrophy and disability in MS. Our findings suggest that retinal OCTA might be a new tool for monitoring neurodegeneration during MS

    High-Pitch Computed Tomography Coronary Angiography—A New Dose-Saving Algorithm: Estimation of Radiation Exposure

    Get PDF
    Purpose. To estimate effective dose and organ equivalent doses of prospective ECG-triggered high-pitch CTCA. Materials and Methods. For dose measurements, an Alderson-Rando phantom equipped with thermoluminescent dosimeters was used. The effective dose was calculated according to ICRP 103. Exposure was performed on a second-generation dual-source scanner (SOMATOM Definition Flash, Siemens Medical Solutions, Germany). The following scan parameters were used: 320 mAs per rotation, 100 and 120 kV, pitch 3.4 for prospectively ECG-triggered high-pitch CTCA, scan range of 13.5 cm, collimation 64 × 2 × 0.6 mm with z-flying focal spot, gantry rotation time 280 ms, and simulated heart rate of 60 beats per minute. Results. Depending on the applied tube potential, the effective whole-body dose of the cardiac scan ranged from 1.1 mSv to 1.6 mSv and from 1.2 to 1.8 mSv for males and females, respectively. The radiosensitive breast tissue in the range of the primary beam caused an increased female-specific effective dose of 8.6%±0.3% compared to males. Decreasing the tube potential, a significant reduction of the effective dose of 35.8% and 36.0% can be achieved for males and females, respectively (P < 0.001). Conclusion. The radiologist and the CT technician should be aware of this new dose-saving strategy to keep the radiation exposure as low as reasonablly achievable
    corecore