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Introduction
Fatigue, depression, and pain are highly prevalent in 
multiple sclerosis (MS), jointly affecting more than 
half of MS patients.1–4 Depending on the study cohort 
and screening method between 60% and 90% of 
patients suffer from fatigue,1 25% and 50% from 
depressive symptoms,2,4 and 55% and 70% from pain3 
in the course of the disease. Moreover, these symp-
toms often co-occur and show strong associations5,6 
and have therefore been conceptualized as a symptom 
cluster.4,7 However, current treatments are only par-
tially effective.1–4 Thus, fatigue, depression, and pain 
cause a substantial individual and societal burden by 
affecting the quality of life and the ability to work in 
patients suffering from MS.6

The frequent co-occurrence of fatigue, depression, and 
pain already in the prodromal phase8 and in early MS 
as well as their parallel development over time suggest 
a common etiology.5 Moreover, these symptoms share 
decreased motivation and a lack of positive affect,1,2,9 
which are essential signs of anhedonia.10,11 Anhedonia 

is the reduced ability to strive for and to experience 
pleasure,10,11 and has been attributed to deficits in 
reward processing.12 Importantly, it is a core feature 
of many neuropsychiatric disorders, including chronic 
fatigue syndrome,10 major depression,10,11 and chronic 
pain,9 and has been associated with poor long-term 
outcomes and treatment responses.11 This finding is 
not surprising since hedonic valence is not only a cen-
tral component of emotional responses but also a 
powerful motivator in guiding behavior and  
learning.10,13,14 From a neurobiological standpoint, 
dysfunction of the brain’s reward system plays an 
important role in anhedonia.12,14 The key neurotrans-
mitters involved in valence and reward processing are 
the monoamines dopamine and serotonin with their 
mesocorticolimbic pathways from the midbrain to the 
basal ganglia, the limbic system, and the prefrontal 
cortex.11,12,14 Interestingly, MS patients show impaired 
reward responsiveness, especially when suffering 
from fatigue.15 Moreover, neuroimaging studies have 
shown overlapping structural and functional altera-
tions of mesocorticolimbic pathways in MS patients 
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suffering from fatigue,1,16 depression,2,4 and pain.17 
Furthermore, all three symptoms have been linked to 
dysfunction of monoaminergic neurotransmission in 
central nervous system (CNS) inflammation.1,4,18–20

In the present review, we summarize neuroimaging 
and neuroimmunological findings that indicate that 
dysfunction of mesocorticolimbic reward pathways 
might represent a shared mechanism fostering the 
anhedonic symptom triad of fatigue, depression, and 
pain in MS. In particular, we will discuss how neuro-
inflammation might disturb monoaminergic neuro-
transmission, which leads to dysfunctional reward 
processing as a possible common pathophysiology 
underlying anhedonic symptoms in MS. Moreover, 
we will discuss the potential therapeutic implications 
and limitations of such a framework.11,18,19,21,22

Neuroimaging findings
Fatigue, depression, and pain are associated with sev-
eral structural and functional changes of the brain in 
MS1,2,4,16,17 and beyond.1,23,24 Such changes have been 
most consistently observed in the prefrontal cortex, 
the basal ganglia, and the limbic system.1,2,4,16,17,23,24

Structural neuroimaging findings
In MS patients suffering from fatigue and depression, 
a higher lesion load and more severe cortical atrophy, 
particularly in the prefrontal cortex, have been 
observed.25–27 Similarly, prefrontal gray matter altera-
tions have been frequently reported in chronic pain 
patients (for a review, see Kang et al.24) but have thus 
far not been assessed in MS. Moreover, gray matter 
atrophy in the basal ganglia, predominantly the stria-
tum, and the limbic system was described for MS 
patients suffering from fatigue,25,28,29 depression,30 
and pain.17 In addition, diffusion tensor imaging 
(DTI) studies have shown white matter tract abnor-
malities in fronto-striatal and fronto-limbic pathways 
of MS patients with fatigue31,32 and depression.30,33 
Similar studies in MS patients suffering from pain are 
lacking.

Functional neuroimaging findings
In line with these structural findings, functional neu-
roimaging studies have shown alterations of fronto-
striatal and fronto-limbic function and connectivity in 
MS patients with fatigue, depression, and pain.2,16,17 
In fatigued MS patients, a positron emission tomogra-
phy (PET) study reported decreased glucose metabo-
lism in the basal ganglia and the prefrontal cortex.34 
More recent functional magnetic resonance imaging 

(fMRI) studies reported decreased functional connec-
tivity between the ventral striatum and the prefrontal 
cortex that scaled with the severity of fatigue.35,36 
Correspondingly, activation of the fronto-striatal net-
work was associated with an improvement of 
fatigue.37 In depressed MS patients, single photon 
emission tomography (SPECT) indicated a discon-
nection of cortical and subcortical areas of the limbic 
system.38 This notion is supported by a more recent 
fMRI study showing decreased connectivity between 
the prefrontal cortex and the amygdala in MS patients 
suffering from depression.39 In MS patients with 
chronic pain, fMRI has shown a decreased connectiv-
ity of the caudate and accumbens nuclei.17

Summary
Neuroimaging studies in MS patients with fatigue, 
depression, and pain have indicated gray matter atro-
phy and decreased functional connectivity in the pre-
frontal cortex, the basal ganglia, and the limbic 
system. These structures are core areas of the meso-
corticolimbic system, a key structure in valence and 
reward processing that strongly depends on monoam-
inergic neurotransmission. Thus, fatigue, depression, 
and pain in MS are associated with functional disrup-
tion and, ultimately, degeneration of mesocorticolim-
bic pathways.

Neuroimmunological findings
There is mounting evidence that neuroinflammation 
can disturb neural function, which may eventually 
result in fatigue, depression, and pain in MS1,2,4,22 and 
other contexts.18,19,40 The model of cytokine-induced 
sickness behavior has provided insights into these 
mechanisms. In this model, cytokine-induced disrup-
tion of monoaminergic neurotransmission has been 
proposed as a key mechanism leading to dysfunc-
tional reward processing, and eventually to fatigue, 
depression, and pain.18–21

Cytokines and sickness behavior in MS
Cytokines play an important yet only partially under-
stood role in the pathogenesis of MS41 and have been 
directly linked to fatigue and depression in MS and 
beyond.1,2,4,20,42 Pro-inflammatory cytokines are 
well-known to directly act on the brain to induce 
sickness behavior, an anhedonic state characterized 
by decreased motivation, heightened pain sensitiv-
ity, prominent fatigability, and depressed mood.18–20 
In MS, increased serum levels of the pro-inflamma-
tory cytokines Tumor necrosis factor alpha (TNF-α) 
and Interferon gamma (IFN-γ), as well as higher 
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frequencies of CD8+ T cells producing them have 
been related to fatigue and depression.43,44 Moreover, 
fatigue and depression in MS were found to be asso-
ciated with higher serum and cerebrospinal fluid 
(CSF) levels of the pro-inflammatory cytokine 
Interleukin-6 (IL-6).42,45 Unfortunately, these results 
are confined by rather small sample and effect sizes. 
In addition, a prominent role of inflammatory pro-
cesses in the pathophysiology of chronic pain has 
been discussed in MS and beyond.22 However, the 
relationship between cytokine levels and pain symp-
toms in MS remains to be elucidated.22

From cytokine-induced monoaminergic disruption 
to dysfunctional reward processing
Sickness behavior resembles the leitmotif of anhe-
donia observed in fatigue, depression, and pain that 
has been attributed to dysfunctional reward pro-
cessing.11,12,18,19 Importantly, reward processing 
crucially depends on monoaminergic neurotrans-
mission that is particularly sensitive to inflamma-
tion in the periphery and in the CNS.18,19,21 Specifically, 
pro-inflammatory cytokines impede monoamine syn-
thesis by reducing the availability of precursor amino 
acids in the periphery and synaptic availability in the 
CNS by hampering the release and inducing the reup-
take of monoamines.18,19,21 In the case of the mono-
amine neurotransmitter serotonin, which plays a 
key role in the regulation of affect, cytokines 
increase the metabolism of the precursor trypto-
phan via the alternative kynurenine pathway by 
inducing indoleamine 2,3 dioxygenase (IDO).46 For 
the key motivational and reward neurotransmitter 
dopamine, cytokines decrease the availability of 
the co-factor tetrahydrobiopterin (BH4), thereby 
limiting the turnover of the precursors phenylala-
nine and tyrosine.47 In addition, the synaptic avail-
ability of serotonin and dopamine is reduced by 
decreased presynaptic vesicular release and 
increased activity of the corresponding reuptake 
transporters through pro-inflammatory cytokines 
such as TNF-α and Interleukin-1β (IL-1β), released 
by brain-resident microglia.48–50 Correspondingly, 
altered serotonin transporter (SERT) availability in 
the brain was shown in MS patients using PET 
imaging, which scaled with symptoms of depres-
sion and fatigue.51

The role of microglia
Microglia most likely play an important role not 
only in MS pathology52,53 but also in inflammation-
induced dysfunction of valence and reward process-
ing associated with fatigue, depression, and 

pain.19,21,22,54 This hypothesis is supported by recent 
PET studies using radioligand binding to the trans-
locator protein (TSPO) that signals microglial acti-
vation. In MS patients, increased TSPO signaling in 
the hippocampus is associated with impaired func-
tional connectivity in corticolimbic structures and 
depressive symptoms.55 Beyond MS, increased 
TSPO signaling in mesocorticolimbic structures 
was observed in chronic fatigue syndrome56 and has 
been related to negative affect in chronic pain condi-
tions, including fibromyalgia.57,58 Interestingly, fibro-
myalgia is characterized not only by chronic 
widespread pain but also by fatigue and depression 
and has been connected to altered cytokine signaling59  
and monoamine dysregulation.60

Importantly, microglia do not only release cytokines 
that hamper monoaminergic neurotransmission but 
can also contribute to neurodegeneration.52 In this 
context, the previously mentioned kynurenine path-
way and the concept of excitotoxicity play an 
important role.21 Deviation along the kynurenine 
pathway by cytokine-mediated induction of IDO 
leads to microglial production of neurotoxic metab-
olites such as quinolonic acid that maintains inflam-
mation and fosters neurodegeneration through 
excitotoxicity.46 Excitotoxicity is caused by excess 
extracellular glutamate levels in the CNS, leading to 
overstimulation of glutamate receptors and, ulti-
mately, neuronal and glial damage.61,62 Quinolonic 
acid exerts its excitotoxic effects by stimulating 
release and inhibiting reuptake of glutamate from 
astrocytes as well as direct agonist binding to gluta-
mate (N-methyl-D aspartate (NMDA)) receptors.63 
Importantly, stimulation of extrasynaptic NMDA 
receptors by excess extracellular glutamate levels 
was reported to be associated with decreased expres-
sion of brain-derived neurotrophic factor (BDNF) 
and the induction of cell death.64 Moreover, pro-
inflammatory cytokines such as TNF-α, IFN-γ, and 
IL-1β directly contribute to excitotoxicity in the 
gray and white matter by hampering glutamate 
reuptake through astrocytes and oligodendrocytes, 
which might be of particular importance in the con-
text of MS.61,62,65

Summary
In their anhedonic presentation, fatigue, depression, 
and pain in MS resemble the clinical picture of sick-
ness behavior that has been directly linked to pro-
inflammatory cytokines. These symptoms might 
directly result from cytokine-induced disruption of 
monoaminergic neurotransmission and, ultimately, 
degeneration of mesocorticolimbic pathways that are 
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important for valence and reward processing. 
Microglial activation and excitotoxicity might play a 
prominent role in these processes.

A framework of how neuroinflammation 
translates into dysfunctional reward processing 
and anhedonic symptoms in MS
The evidence outlined above suggests that dysfunc-
tional reward processing might represent a common 
pathophysiological feature underlying fatigue, 
depression, and pain in MS. Figure 1 summarizes 
this evidence and proposes a framework of how 
neuroinflammation might translate into anhedonic 
symptoms.

In this framework, neuroinflammation causes 
cytokine-induced disruption of monoaminergic neu-
rotransmission. This disruption leads to altered meso-
corticolimbic function and connectivity, which 
culminates in dysfunctional reward processing. In 
addition, sustained neuroinflammation, sub-served by 
microglial activation as well as demyelinating lesions, 
might foster neurodegeneration of brain structures 
involved in valence and reward processing in more 
advanced disease stages. The resulting inability to 
assign hedonic valence and, thus, to anticipate, seek, 
and perceive reward might underlie the common 

leitmotif of anhedonia observed in MS patients suf-
fering from fatigue, depression, and pain.

Therapeutic implications
The framework has potential implications for the 
pharmacologic and non-pharmacologic treatment of 
anhedonic symptoms in MS.

Pharmacologically, drugs enhancing monoamine neu-
rotransmission such as selective serotonin and 
noradrenaline reuptake inhibitors (SSRIs and 
SSNRIs) and psychostimulants with dopaminergic 
effects are already used as treatment for fatigue and 
depression also in MS.1,4 Along the same line, drugs 
strengthening dopamine synthesis through supple-
mentation of BH4, such as L-Methylfolate as well as 
L-DOPA, might be considered as potential treat-
ments.11,21 Furthermore, IDO inhibitors like 1-meth-
yltryptophan (1-MT), with beneficial effects on 
excess glutamatergic neurotransmission, might repre-
sent a treatment approach for anhedonic symptoms in 
MS and beyond.11,21

As the framework considers disrupted monoaminer-
gic neurotransmission to be a downstream effect of 
neuroinflammation, targeting neuroinflammation for 

Figure 1. A translational framework for neuroinflammation-induced dysfunction of reward processing.
Pro-inflammatory cytokines affect the function and structure of mesocorticolimbic pathways and brain areas. Functionally, monoamine 
depletion causes disruption of neurotransmission. Structurally, excess glutamate levels fostered by microglial activation lead to 
degeneration and atrophy. The resulting dysfunction of reward processing manifests in anhedonia that is a prominent feature of fatigue, 
depressive symptoms, and pain in MS patients.
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the treatment of anhedonic symptoms is obvious.11,21 
Anti-inflammatory therapy has already been dis-
cussed for the treatment of fatigue, depression, and 
chronic pain in neuropsychiatric disorders indepen-
dently of MS.11,19,21,22 In particular, Minocycline—
which stabilizes glia function and might positively 
influence MS progression66—has been considered as 
a promising drug for the treatment of anhedonic 
symptoms.11,21,22 Moreover, antibodies targeting TNF-
α and the IL-6 receptor (IL-6R) have shown beneficial 
effects on anhedonic symptoms in other immune- 
mediated diseases such as rheumatoid arthritis,67 anky-
losing spondylitis, Crohn’s disease, and psoriasis.11  
However, there have been reports that these antibod-
ies induce relapses in MS patients.41 Furthermore, the 
framework might increase awareness of the potential 
effects of disease-modifying treatments (DMTs) on 
anhedonic symptoms in MS. For instance, flu-like 
symptoms resembling sickness behavior occur during 
treatment with interferons.68 Correspondingly, aware-
ness of such potential effects does influence the 
choice of the individual DMT. Moreover, positive as 
well as negative effects on anhedonic symptoms 
might be considered as a secondary endpoint for 
future clinical trials on DMTs.

Non-pharmacologically, the framework advocates the 
use of behavioral and biopsychosocial interventions, 
such as cognitive-behavioral therapy, to counteract 
the detrimental affective and motivational effects of 
anhedonia.69 Such behavioral approaches might not 
only alleviate anhedonic symptoms but also, in turn, 
positively influence levels of inflammatory markers in 
neuropsychiatric disorders associated with anhedonia.21 
Moreover, non-invasive brain stimulation techniques 
such as transcranial direct current stimulation  
(tDCS) hold considerable potential to alleviate this  
symptom cluster7,70 and might have beneficial effects 
on cortico-subcortical network functioning including 
inflammation-induced synaptopathy.71

Limitations
The proposed framework is far from being fully elab-
orated. First, although fatigue, depression, and pain 
share a largely overlapping anhedonic clinical presen-
tation, the framework does not take the differences 
between these symptoms into account. It rather inter-
prets the mechanisms leading to anhedonia as a semi-
specific element of fatigue, depression, and pain. 
Disentangling shared mechanisms and manifestations 
of anhedonia from those specific for fatigue, depres-
sive symptoms, and pain will be crucial for a better 
understanding of all three symptoms. However, alle-
viation of their common clinical core feature 

anhedonia might yield beneficial effects on all three 
symptoms. Moreover, such positive effects might 
involve additional clinically relevant and closely 
related symptoms such as sleep disturbances and 
anxiety.7 Second, the framework focusses on mono-
aminergic neurotransmission, only briefly touches 
on the role of microglia, glutamatergic function, and 
neurotrophic factors but does not cover other highly 
important interrelated mechanisms, for example, the 
hypothalamic-pituitary-adrenal (HPA)-axis, GABA 
ergic as well as opioidergic neurotransmission and 
the role of other immune cell populations.11,20,22 
Moreover, the role of demyelinating lesions in caus-
ing anhedonic symptoms by directly affecting meso-
corticolimbic structures is not being discussed in 
detail. In addition, the framework focusses on neuro-
biological mechanisms and does therefore not include 
important cognitive-behavioral and other psychoso-
cial factors that are well-known to influence anhe-
donic symptoms in MS patients.69 Third, the proposed 
framework does not claim specificity for MS but 
rather aims to transfer and link findings on neuro-
immune interactions important for anhedonic symp-
toms from various contexts.11,18,19,21 However, since 
neuroinflammation is the hallmark of MS pathology, 
it appears logical to apply these findings to explain 
why anhedonic symptoms occur with such high fre-
quency already in early MS.

Outlook
Considering the relationships between anhedonic 
MS symptoms, the function of valence and reward 
systems in the brain, and neuroinflammation, further 
research on neuro-immune interactions promises to 
advance the understanding and therapy of these bur-
densome conditions. For instance, assessing the 
relationship between peripheral and central inflam-
matory biomarkers, such as cytokine levels in the 
serum and CSF, the structure and function of meso-
corticolimbic pathways and anhedonic symptoms in 
a large cohort of MS patients and in a longitudinal 
fashion would represent a logical next step. In addi-
tion, the influence of the HPA-axis and different 
immune cell populations on neurotransmitter sys-
tems implicated in valence and reward processing 
might be further evaluated in MS patients. Moreover, 
NMDA receptor antagonists such as ketamine have 
been shown to be effective in treating depression by 
rapidly reversing reward deficiency via normalizing 
monoamine neurotransmission.72 Thus, glutamatergic 
function, which also shows responses to non-invasive 
brain stimulation techniques, might represent another 
promising mechanism for future research on the 
symptom cluster of fatigue, depression, and pain in 
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MS.21,71,72 Eventually, interventional studies are 
needed to probe the effectiveness of the different 
pharmacological and non-pharmacological thera-
peutic approaches in MS patients. These steps might 
help to better understand and treat anhedonic symp-
toms in MS and beyond.
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