3 research outputs found

    Modulating local airway immune responses to treat allergic asthma: lessons from experimental models and human studies

    Get PDF
    With asthma affecting over 300 million individuals world-wide and estimated to affect 400 million by 2025, developing effective, long-lasting therapeutics is essential. Allergic asthma, where Th2-type immunity plays a central role, represents 90% of child and 50% of adult asthma cases. Research based largely on animal models of allergic disease have led to the generation of a novel class of drugs, so-called biologicals, that target essential components of Th2-type inflammation. Although highly efficient in subclasses of patients, these biologicals and other existing medication only target the symptomatic stage of asthma and when therapy is ceased, a flare-up of the disease is often observed. Therefore, it is suggested to target earlier stages in the inflammatory cascade underlying allergic airway inflammation and to focus on changing and redirecting the initiation of type 2 inflammatory responses against allergens and certain viral agents. This focus on upstream aspects of innate immunity that drive development of Th2-type immunity is expected to have longer-lasting and disease-modifying effects, and may potentially lead to a cure for asthma. This review highlights the current understanding of the contribution of local innate immune elements in the development and maintenance of inflammatory airway responses and discusses available leads for successful targeting of those pathways for future therapeutics.Pathogenesis and treatment of chronic pulmonary disease

    Modulating local airway immune responses to treat allergic asthma: lessons from experimental models and human studies

    Get PDF
    With asthma affecting over 300 million individuals world-wide and estimated to affect 400 million by 2025, developing effective, long-lasting therapeutics is essential. Allergic asthma, where Th2-type immunity plays a central role, represents 90% of child and 50% of adult asthma cases. Research based largely on animal models of allergic disease have led to the generation of a novel class of drugs, so-called biologicals, that target essential components of Th2-type inflammation. Although highly efficient in subclasses of patients, these biologicals and other existing medication only target the symptomatic stage of asthma and when therapy is ceased, a flare-up of the disease is often observed. Therefore, it is suggested to target earlier stages in the inflammatory cascade underlying allergic airway inflammation and to focus on changing and redirecting the initiation of type 2 inflammatory responses against allergens and certain viral agents. This focus on upstream aspects of innate immunity that drive development of Th2-type immunity is expected to have longer-lasting and disease-modifying effects, and may potentially lead to a cure for asthma. This review highlights the current understanding of the contribution of local innate immune elements in the development and maintenance of inflammatory airway responses and discusses available leads for successful targeting of those pathways for future therapeutics

    Immunoglobulin free light chains are biomarkers of poor prognosis in basal-like breast cancer and are potential targets in tumor-associated inflammation

    Get PDF
    Inflammation is an important component of various cancers and its inflammatory cells and mediators have been shown to have prognostic potential. Tumor-infiltrating mast cells can promote tumor growth and angiogenesis, but the mechanism of mast cell activation is unclear. In earlier studies, we demonstrated that immunoglobulin free light chains (FLC) can trigger mast cells in an antigen-specific manner. Increased expression of FLC was observed within stroma of various human cancers including those of breast, colon, lung, pancreas, kidney and skin, and FLC expression co-localized with areas of mast cell infiltration. In a large cohort of breast cancer patients, FLC expression was shown associated with basal-like cancers with an aggressive phenotype. Moreover, lambda FLC was found expressed in areas of inflammatory infiltration and its expression was significantly associated with poor clinical outcome. Functional importance of FLCs was shown in a murine B16F10 melanoma model, where inhibition of FLC-mediated mast cell activation strongly reduced tumor growth. Collectively, this study identifies FLCs as a ligand in the pro-tumorigenic activation of mast cells. Blocking this pathway may open new avenues for the inhibition of tumor growth, while immunohistochemical staining of FLC may be helpful in the diagnosis and prognosis of cancer
    corecore