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Abstract
With asthma affecting over 300million individuals world-wide and estimated to affect 400million by 2025, developing effective,
long-lasting therapeutics is essential. Allergic asthma, where Th2-type immunity plays a central role, represents 90% of child and
50% of adult asthma cases. Research based largely on animal models of allergic disease have led to the generation of a novel class
of drugs, so-called biologicals, that target essential components of Th2-type inflammation. Although highly efficient in sub-
classes of patients, these biologicals and other existing medication only target the symptomatic stage of asthma and when therapy
is ceased, a flare-up of the disease is often observed. Therefore, it is suggested to target earlier stages in the inflammatory cascade
underlying allergic airway inflammation and to focus on changing and redirecting the initiation of type 2 inflammatory responses
against allergens and certain viral agents. This focus on upstream aspects of innate immunity that drive development of Th2-type
immunity is expected to have longer-lasting and disease-modifying effects, and may potentially lead to a cure for asthma. This
review highlights the current understanding of the contribution of local innate immune elements in the development and
maintenance of inflammatory airway responses and discusses available leads for successful targeting of those pathways for
future therapeutics.
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Introduction

Asthma is a chronic inflammatory disease of the lungs
resulting in episodes of reversible airway obstruction in a

growing group of both children and adults [1]. Lung inflam-
mation is a critical element in the pathogenesis of asthma.
Interplay with local structural cells will lead to airway remod-
elling in response to various exogenous triggers, such as aller-
gens, viral infections, air pollution, or cigarette smoke.
Allergic asthma, in which Th2-type immunity plays a central
role, represents the majority of asthma cases, particularly in
children [2]. Advances in treating severe allergic asthma have
been made through targeting specific components of adaptive
immunity in the Th2-type cascade. On the horizon is the next
generation of therapeutics with the aim of not only controlling
symptoms but also addressing the underlying cause by
targeting innate immunity and redirecting the adaptive im-
mune response. Targeting innate processes and altering the
immune response requires knowledge of cellular interactions
and responses in the affected organ, i.e., the airways. This is
relatively easily obtained from mouse models sensitized to
allergens; however, their lung anatomy and immune system
differs from that of humans, and they have a short lifespan,
making it difficult to assess long-term effects of chronic in-
flammation [3]. On the other hand, disease development is
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difficult to assess in a human cohort, and the availability of
airway tissue to study local responses is limited. Recent tech-
nical developments such as mass-cytometry and single-cell
RNA sequencing may help to partly overcome this limitation
[4, 5] by vastly increasing the volume of data that can be
obtained from relatively small tissue or sputum samples.
With these types of advances, our understanding of the mech-
anisms underlying allergic asthma is increasing and targets
within the innate immune system are coming into view. In this
review, we will discuss the therapeutic advances targeting in-
nate immune components and highlight future high potential
strategies.

Biologicals targeting Th2-type immune
responses: successful translation from bench
to bedside

Evidence of the crucial importance of T(h)2 cell cytokines,
eosinophils, and IgE in human asthma stems largely from
experimental allergic airwaymodels. These studies, combined
with the presence of peripheral blood allergen-specific Th2
cells and eosinophils in allergic patients, have resulted in the
generation of a new class of therapeutic antibodies against
Th2-type components, so-called biologicals. These are recom-
mended for severe asthma when conventional medication is
not effective. Various biologicals targeting IgE, IL-4R alpha
chain, IL-5, and IL-5R are approved (extensively reviewed
elsewhere) [6], showing beneficial effects in particular sub-
groups of patients, but not in others. Clinical markers, includ-
ing IgE levels, blood eosinophil count and exhaled nitric oxide
(FeNO) [7], are often a predictor of response and an indicator to
which specific biological should be administered; however, a
more complete profile is necessary to increase accuracy. For
example, for omalizumab, the first approved biological
targeting IgE, it was recently shown that a high baseline level
of serum CXCL10 and IL-12 is predictive of a response to the
treatment in severe asthma [8]. This not only predicts which
patient groups benefit the most but also highlights the exis-
tence of different endotypes in allergy and asthma and the
need for a more personalized approach in treating them.
Another example of a novel approach is to block the prosta-
glandin D2 (PGD2) receptor (DP2 or CRTH2). DP2 is
expressed on various Th2-related cell types, and when
PGD2 is released by activated mast cells, type 2 cells will be
recruited and activated and asthma development is accelerated
[9, 10]. In clinical trials, DP2 antagonists have been well tol-
erated and shown potential efficacy through improvement of
FEV1 and reduced airway eosinophils [11]. However, mostly
patients with eosinophilic asthma seem to benefit from this
therapy. When assessing efficacy, identifying the appropriate
patient population can make the difference between success
and discontinuation of the therapy.

Despite the advances in biologicals to treat asthma [12], so
far, none have shown a long-lasting disease-modifying effect
and termination of monoclonal antibody therapy usually re-
sults in a reoccurrence of symptoms. Indeed, stopping after
even 5 years of omalizumab therapy resulted in an increase in
exacerbations compared with patients who stayed on anti-IgE
treatment [13], indicating that maintenance therapy is needed
to achieve asthma control. In addition, current biologicals
mostly target the end of the T(h)2 inflammatory cascade, af-
fecting eosinophil activation and the IgE-mediated responses,
while the process of allergic sensitization and early clinical
symptoms remains untouched. It may be interesting, therefore,
to address upstream targets in the allergic response to reach a
more widespread suppression, leading to improved disease
management.

With advances in cellular and molecular techniques, we are
now gaining knowledge on essential elements of the inflam-
matory responses in the affected lung tissues of asthma pa-
tients. These studies confirm a crucial role of the barrier func-
tion of the epithelium, the cytokines they produce, dendritic
cells (DCs) as orchestrators of the immune system, and a
relatively new class of immune players, innate lymphoid cells.
With this knowledge, new avenues of therapeutics should be
pursued, targeting cells and molecules responsible for initiat-
ing and orchestrating the inflammation in asthma to achieve
long-lasting modification of the immune response.

Dendritic cells

Allergen-specific Th2 cells develop from naive T cells via
stimulation by allergen-exposed dendritic cells (DCs) that mi-
grated from peripheral sites, i.e., the lung, to the draining
lymph nodes (LN). As such, DCs are the main cell type re-
sponsible for both the sensitization and induction of effector
phases in allergies (reviewed in [14, 15] and are likely impor-
tant targets for therapeutic interventions to control allergic
airway disease. To identify DC-specific therapeutic targets,
detailed knowledge on the presence and functions of distinct
DC subsets in the airways, and in allergic airway disease, is
crucial.

In both humans and mice, DCs are classified as conven-
tional DCs (cDCs), consisting of a cDC1 and cDC2 subset,
and plasmacytoid DCs (pDCs). It was only recently that mu-
rine and human DC populations were aligned across various
tissues including the lung, enabling better comparison of DC
subsets between species. In brief, expression of CD11c and
MHCII together with additional markers define cDCs subsets:
where cDC1 express CADM1, XCR1, and IRF8; cDC2 ex-
press CD172a, CD1c, and IRF4; pDCs express MHCII and
CD123, but not CD11c, with high IRF8 and intermediate
IRF4 expression [16]. However, in many studies published
so far, human and mouse DC subsets have been classified
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by other separate, non-species overlapping markers: human
cDC1s and cDC2s have been referred to as CD141+ and
CD1c+ DCs, while in mice, cDC1 have been identified as
CD8a+CD11chi or CD103+, and cDC2 as CD8a−CD11chi or
CD11b+, respectively. Moreover, the presence of monocyte-
derived inflammatory DCs (moDCs) has been described in
multiple tissues and is often characterized by the additional
expression of CD11b, CD14, CD64, and/or the high-affinity
Fc receptor for IgE, FcεRI [17–19]. Importantly, due to limit-
ed use of cell-identification markers in many studies, these
moDCs may also be present in the gated cDC2 population,
which hampers the interpretation, comparison, and translation
of results from various studies in human and murine (model)
systems.

Insights into cell distribution in the airways during allergic
disease can be important as distinct DC subsets have been
shown to exhibit differential functional capacities that are
largely conserved between species (reviewed in [14, 20].
Generally, cDCs are specialized in antigen-specific stimula-
tion of T cells. cDC1 can induce CD4+ Th1 cell responses and
have cross-presenting capacity enabling them to activate
CD8+ T cells by presentation of extracellular-derived antigens
in MHCI. cDC2 have a more prominent role in the induction
of either effector Th cell or Treg cell responses, depending on
activating or tolerizing signals they receive during their time
as sentinels in the peripheral tissue. In contrast, pDCs are
potent IFNα producers and are primarily involved in anti-
viral immune responses, though tolerance-inducing capacities
have also been reported. It is unclear what causes the func-
tional divergence of DC subsets, though it is likely due to a
dynamic interplay of intrinsic differences (e.g., in antigen up-
take, lysosomal processing, migration) and context-dependent
conditions (e.g., type of antigen, adjuvant, dose, and tissue
environment) [21]. These context-dependent conditions also
significantly contribute to the divergence in T cell–polarizing
capacities of single DC subsets in the airways, as discussed
below.

The role of various DC subsets in asthma model
systems

The individual contribution of the distinct DC subsets in the
sensitization and effector phases of allergic airway disease has
been almost exclusively studied in murine asthma models. In
general, airway challenges result in DC migration to the me-
diastinal lymph nodes (MLN) after 1 day, with highest fre-
quencies of cDC2s, followed by cDC1 and pDCs. Monocyte-
derived DCs are poorly migratory [17, 19, 22], which proba-
bly excludes any possible contribution to sensitization.
However, no consensus has been reached on which subset is
dominant in orchestrating allergic airway disease.

Of all the DC subsets, cDC2s take up allergens most effi-
ciently, migrate to the draining LNs, and induce T cell

proliferation [17, 23]. Two studies demonstrated that cDC2s
were able to induce Th2 and Th17 cell–mediated asthma
in vivo, or upon adoptive transfer of house dust mite
(HDM)-primed and sorted lung DC subsets into naive recip-
ients [17, 24]. In contrast, Nakano et al. demonstrated that
isolated lung cDC2s from ovalbumin-, HDM-, or cockroach-
immunized mice were critical for enhanced Th1 cell responses
[22]. However, using a different marker to evaluate the role of
cDC2, i.e., the transcription factor IRF4, it was shown that
mice, either deficient in or depleted of, IRF4 had reduced
Th2 cell responses in the lungs and skin [25, 26]. Although
there is some conflicting evidence, overall cDC2 seemed po-
tent in their ability to drive allergen-specific Th2 cell re-
sponses in the lung.

The role of cDC1s is well appreciated in the induction of
anti-viral and anti-tumor immunity; however, their role in
allergen-specific Th2 cell polarization remains controversial.
cDC1 only poorly take up allergens compared to other DC
subsets [17, 22] and opposing studies have indicated that they
either promote or inhibit Th2 cell immune responses in the
lung [27–29]. This may be related to the type and amount of
allergen used. This subset may also have a tolerogenic func-
tion, as cDC1s from tolerized mice induced Foxp3 regulatory
T cells (Treg) cells in vitro, and tolerization to inhaled antigen
was impossible in cDC1-deficient mice [30].

Studies on moDC function in the lungs during allergen
challenge show potent allergen presentation and abundant re-
lease of proinflammatory chemokines (especially because of
their high prevalence) that influences eosinophil and mono-
cyte migration a few days after repeated allergen challenge
[17, 31] and attracts Th2 cells [17, 32]. The findings point to
a crucial role in promoting existing allergic inflammation in
the lung, while the role of moDCs in the sensitization phase
was limited due to their poor migratory capacity and need for
high HDM doses to induce allergic asthma sensitization [17].

Finally, a critical role was suggested for pDCs in mediating
allergic airway disease during respiratory viral infections, in-
cluding rhinovirus-induced exacerbations [33, 34]. Enhanced
Th2 cell responses were induced by IL-25-activated pDCs that
were recruited to the lung within 1 day after virus-induced
exacerbations [33]. This is supported by observations in
humans, showing that IgE-activated human pDC drive en-
hanced Th2 cell polarization [35]. In contrast, in neonatal
mice, pDC-derived semaphorin 4a induced the expansion of
Treg cells, which controlled susceptibility to viral bronchioli-
tis and subsequent viral challenge–induced asthma in later life
[34]. The discrepancies found in pDC functions may be at
least partly related to the timing of the analyses: e.g., before
or after initiation of inflammation, as immature pDCs more
likely enhance tolerance.

Collectively, even though the cDC2 subset seems most
capable of driving allergic inflammation in the lung, it is clear
that the other DC subsets can also gain the capacity to drive
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Th2 cell responses, depending on the model, the type of aller-
gen, or allergen dose. Until now, functional analysis of human
lung DC subsets in healthy individuals or asthma patients is
lacking, and it remains difficult to extrapolate the findings
from mouse models. Yet, the mechanisms employed by dis-
tinct DC subsets to enhance Th2 cell–mediated inflammation
generally appear to be more alike and will be discussed below.

Mechanisms involved in Th2 cell induction by DCs

The mechanisms through which DCs control Th2 cell polari-
zation appear to vary both in murine disease models as well as
between humans, which can likely be attributed to species
differences, as well as differences in allergen properties, mi-
croenvironmental conditions, and genetic variations in the
host. Importantly, DCs do not produce IL-4, the key driver
of Th2 cell polarization, which may instead be produced by
local accessory cells such as basophils or innate lymphoid
cells (ILCs) [21]. OX40L, expressed by DCs, along with the
notch ligands Jagged1/2, is well recognized for their ability to
effectively induce and/or enhance Th2 cell differentiation, in
part by regulating the expression of IL-4 and the Th2-specific
transcription factor GATA3 in T cells [36–38]. In addition,
suppression of IL-12 production by DCs is a pre-requisite to
enable induction of Th2 cell responses in mice and humans
because of the absence of Th2 cell–suppressive, counteracting
Th1 responses [39, 40]. A variety of additional receptors
expressed on DCs have been associated with Th2 cell differ-
entiation, including the costimulatory molecules PD-L2 [41],
ICOSL [42, 43], CD40 [44], and the pattern recognition re-
ceptors Dectin-1 and Dectin-2 [45–47], DC-SIGN [48] and
mannose receptor (MR) [49], and the high affinity Fc receptor
for IgE, FcεRI [50]. However, most of these receptors have
also been implicated in the induction of other T cell effector
phenotypes [50, 51], and moreover, regulation of Th2 cell
development via these receptors often follows similar mecha-
nisms, i.e., modulation of IL-12 release and OX40L or
Jagged1/2 expression by DCs.

Importantly, studies on monocytes and DC subsets from
allergic and non-allergic subjects also point to an important
role for OX40L and IL-12 in allergy and asthma. Multiple
studies have looked at activated moDCs and cDC2s derived
from allergic rhinitis, allergic asthma, and/or atopic dermatitis
patients compared with non-allergic controls, describing re-
duced IL-12 release accompanied by increased release of
pro-allergic factors, (such as PGE2), proinflammatory cyto-
kines (TNF-α, IL-1β), and type 2 chemokines. Furthermore,
cDC2s from those patients also had increased expression of
costimulatory molecules OX40L, PD-L2, and cytokine recep-
tor TSLPR, leading to enhanced Th2 and Th17 cell differen-
tiation. In addition, their pDCs produced less IL-12, and
IFNα, resulting in a reduced capacity to induce IL-10-
producing CD4+ Tcells [41, 52–54]. Lastly, FcεRI expression

and IgE binding on pDCs and cDC2s is significantly higher in
allergic patients than in healthy individuals [50, 54, 55] and
IgE-mediated activation of cDC2s is mostly associated with
induction of Th2 cell responses [56]. Collectively, these find-
ings indicate that functional anomalies in DC subsets of aller-
gic patients, either intrinsic or induced by allergic inflamma-
tion, lead to changes in costimulatory molecule expression
and cytokine/chemokine release, together contributing to en-
hanced Th2 cell development. OX40L and IL-12 appear to be
most consistently associated with increased Th2 cell develop-
ment, suggesting that targeting OX40L and/or enhancing IL-
12 secretion may attenuate Th2 cell polarization, and conse-
quently Th2 cell–mediated airway diseases.

Administration of IL-12 has been tested in a group of
mild asthmatic patients and resulted in decreased numbers
of circulating eosinophils after allergen challenge; howev-
er, no change was observed in sputum eosinophils, late-
phase response, or airway hyperresponsiveness.
Additionally, > 20% of patients suffered from flu-like
symptoms, abnormal liver functions, or cardiac arrhyth-
mias [57], precluding this as a viable treatment option.
Blocking OX40L-mediated signaling has also been tested
in human clinical trials. A phase II trial of a humanized
IgG1 anti-OX40L monoclonal antibody (Oxelumab), in
allergic asthma patients, revealed pharmacological activity
through decreased total serum IgE and airway eosinophils
after 16 weeks of treatment. However, there was no effect
on the primary outcome, allergen-induced airway re-
sponses, possibly due to insufficient dosing and treatment
duration or an inadequate outcome parameter [58].
Oxelumab was discontinued following this phase II trial;
however, KyMab produced an alternative IgG4 anti-
OX40L Mab (KY1005) which was able to block T cell–
driven skin inflammation while being well tolerated in
phase I clinical trials in healthy volunteers [59]. KyMab
are currently conducting a phase IIa clinical trial for the
treatment of atopic dermatitis, with preliminary results
expected in the first half of 2020 [59, 60]. These results
will give an indication of the efficacy of KY1005 in
treating Th2-type related diseases, and whether this is ap-
plicable to asthma.

It should be noted, however, that OX40L is not only
associated with enhanced Th2 cell development. Others
have also described essential contributions of OX40L in
Treg, Th1, and Tfh cell development in both mice [61, 62]
and humans [61, 63]. This implies that OX40L-mediated
Th2 cell development is, at least partly, dependent on
additional signals (like cytokines) and that inhibition of
OX40L signaling may not necessarily result in attenuation
of Th2 cell–driven inflammation only. Therefore, it may
be more fruitful to target pathways that lead to modifica-
tion of dendritic cell function, rather than targeting single
costimulatory molecules or DC cytokines.
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Epithelium-derived innate cytokines driving
DC activation and innate lymphoid cells

Biologicals targeting IL-13, IL-13R, IL-5, or IL5R will neu-
tralize type 2 cytokines. This, however, does not prevent the
activation of Th2 cells, and alternative approaches targeting
upstream processes in the Th2-type cascade have been sug-
gested. A major producer of these cytokines, in addition to
Th2 cells, is type 2 innate lymphoid cells (ILC2). These cells
are defined as primarily tissue-resident lymphocytes, which
lack antigen-specific B or T cell receptors. ILCs rapidly pro-
duce various cytokines in response to viral, microbial, or par-
asitic encounter, or tissue damage [64]. Three subclasses of
ILCs have been identified in parallel to the different effector
Th cell subsets, based on their cytokine profile and transcrip-
tion factor expression, with ILC2s expressing GATA-3 and
producing IL4, IL5, and IL-13 upon activation [65]. In fact,
depending on the allergen or route of exposure in mouse
models of allergy, activated ILC2 provide an early type 2
cytokine response, which stimulates Th2 cell skewing [66].
However, it is unclear whether ILC2s also provide an early
source of type 2 cytokines in humans or whether their role is
more prominent in ongoing inflammation. Murine and human
ILCs are functionally and phenotypically similar, although
their phenotype can differ depending on the tissue in which
they reside. A recent study utilizing mass-cytometry to iden-
tify ILC subtypes within various human tissues concluded that
ILC2s and ILC3s were under-represented in non-mucosal tis-
sue and the lung, where the majority of innate lymphoid cells
were NK cells. This is in contrast to the lungs in mice, where
the majority of ILCs are represented by ILC2s [67]. In agree-
ment with murine studies of allergic airway inflammation,
however, increased numbers of ILC2s are present in the blood
and airways (as determined in BAL, sputum, or sinonasal
mucosa) of asthmatic patients, in particular those with uncon-
trolled or partially controlled asthma [66, 68, 69].
Additionally, rapid recruitment of ILC2s upon allergen expo-
sure has been observed.

TSLP, IL-33, and IL-25

Accumulating evidence suggests that the epithelial barrier in-
tegrity at the antigen contact site will influence the subsequent
immune responses by facilitating penetration of allergens into
the submucosa [15]. Various studies have shown that epithe-
lial exposure to environmental insults, such as allergens (in
part through proteolytic activity [70]), virus infection [71], or
air pollutants [72], may serve as a trigger for the epithelial
release of the innate type 2 skewing cytokines TLSP, IL-33,
and IL-25, often referred to as alarmins [15, 73]. These cyto-
kines bind to and activate many different cell types; however,
in the context of the initiation and perpetuation of allergic
responses in the airways, both DCs and ILC2 are important

players. In both murine and human DCs, one or more of the
following Th2 cell inducing characteristics are initiated by
each of these cytokines [73, 74]: (1) DCmaturation (enhanced
MHCII and costimulatory molecule expression) but without
the induction of IL-12 secretion, (2) OX40L expression, and
(3) secretion of Th2 cell–attracting chemokines (like CCL17
and CCL22) [52, 75, 76]. In human ILC2s, stimulation with
TSLP has been shown to promote cell survival, whereas IL-33
enhances cell activation and type 2 cytokine release [77, 78].
Furthermore, in mouse models of allergic airway inflamma-
tion induced by IL-33, steroid treatment affects Th2 cells but
not ILC2s, and this resistance is mediated by TSLP [79].
Indeed, higher levels of ILC2s have been detected in the
lungs, sputum, and blood of steroid-resistant compared with
steroid-sensitive asthma patients [68]. Moreover, the lung, but
not blood ILC2s, from asthmatic patients with elevated TSLP
levels was found to be steroid resistant. This could be reversed
by inhibitors of MEK and STAT5, components of the TSLP
signaling pathway [80]. In contrast, a recent study in children
with severe steroid-resistant asthma shows that airway ILC2
may be sensitive to steroid treatment, as shown using cultured
cells as well as by intramuscular administration of a systemic
steroid. This treatment was found to reduce exacerbations and
symptoms as well as reducing ILC2 and Th2 cells in induced
sputum, without affecting IL-17+ ILC or Th17 cells [81].
Therefore, steroid resistance of ILC2 may differ between chil-
dren and adults. Importantly, anti-TSLP (tezepelumab) has
reached phase IIb clinical trials in adults, showing a significant
reduction in the annual asthma exacerbation rate compared
with placebo in patients with severe, uncontrolled asthma
[82]. Whether such treatment restores steroid-sensitivity of
ILC2 remains to be determined.

IL-33 had previously been shown to remain elevated de-
spite maximal steroid treatment in pediatric severe therapy-
resistant asthma [83]. Furthermore, murine studies showed
that blocking of IL-33 by targeting the IL-33 receptor ST2,
by anti-IL-33 or by synthetic immunomodulatory peptides,
was very effective in reducing OVA-induced airway inflam-
mation, more so, in fact, than blocking individual Th2-type
cytokines IL-4 or IL-13 [84–86]. Currently, anti-IL33 receptor
(ST2) antibodies are in early phase clinical trials to assess their
safety and efficacy in subjects with moderately severe asthma
[59]. Direct targeting of IL-33 has also been considered in
humans and so far a humanized anti-IL-33 was found to be
safe in healthy subjects in a phase I clinical trial [87].

The development of an anti-IL-25 biological has been
slower than that of IL-33 or TSLP, in part due to the difficulty
in generating this antibody. Nevertheless, an anti-IL25 anti-
body is now in pre-clinical development and has been shown
to suppress RV infection induced airway inflammation, while
improving anti-viral responses in a mouse model of OVA-
induced allergic airway disease [88]. Interestingly, within the
airway epithelium, a relatively rare population of
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chemosensory cells (also called Tuft or brush cells) likely
serves as the most important cellular source of IL-25 [89].

Even though existing approved biologicals against IL-5 or
IL-13 (receptors) will also be able to neutralize the activity of
those cytokines being produced by ILC2 and not only TH2
cells, it is questionable whether these biologicals can reach
these targets locally, as ILC2 primarily resides in the (lung)
tissue. Anticalins, a new class of biopharmaceuticals, may
overcome this issue. Anticalins are lipocalin molecules that
can be engineered to target proteins of interest but are smaller
than antibodies and have better tissue penetration [90]. An
IL4-Ra targeted anticalin delivered through oral inhalation is
currently in phase I clinical trials [59]. Further studies are
needed to investigate the efficacy of this highly tissue-
penetrating class of drugs, and whether it will be more effec-
tive in asthma patients.

Granting that the above described novel therapeutics are
targeting molecules more upstream of the allergic cascade,
the efficacy of these therapies still relies on blocking effector
molecules rather than changing the function of cells that play a
crucial role in initiating and propagating local allergic airway
responses. Therefore, it will be important to further explore
avenues more focused on modulating immune cell function,
with the aim of changing its activity rather than temporarily
blocking it.

Immunostimulatory adjuvants
for immunotherapy

In contrast to therapies with biologicals that only seem to
dampen certain aspects of allergic inflammation, allergen-
specific immunotherapy (AIT) is the only treatment available,
which can cure and prevent allergic symptoms. AIT has been
shown to be effective in allergic rhinitis and in venom allergies
[91] and to a lesser extent in allergic asthma; however, the
treatment duration is between 3 and 5 years, and a large num-
ber of administrations are required to reach efficacy.
Successful AIT is associated with a variety of changes at the
cellular level, such as a shift from Th2 to Th1 cell responses
and the induction of tolerogenic responses. The desired im-
mune responses during AIT can be modulated and improved
by immunostimulatory/regulatory adjuvants acting on DCs,
leading to an earlier and longer-lasting effect. For example,
the use of TLR ligands, vitamin D3, and probiotics has been
proposed.

TLR ligand adjuvants are bacterial derived compounds,
which can be combined with the allergen to induce a Th1 type
immune response, thereby attenuating Th2-type responses.
An example is Pollinex Quattro (PQ), which combines pollen
allergens with the TLR4 ligand monophosphoryl lipid A
(MPLA), the non-toxic variant of lipopolysaccharide.
Several phase III clinical studies provide evidence that this

product is well tolerated, with clinical efficacy and potent T
cell responses [92]. The product is available (primarily) in
Europe on a named-patient basis; however, the most recent
phase III study of PQ Birch did not show a statistically signif-
icant difference between the active and placebo arms for the
primary endpoint of combined symptom medication score av-
eraged over the peak birch pollen season. This outcome affects
the progress towards full registration and entering the US
market. Results of a similar phase III study for PQ Grass
due in the next year will determine whether full registration
of PQ AITwill be pursued further [93].

TLR9 ligand CpG has also been tested as an adjuvant for
AIT [94]. Although the primary endpoint of vascular perme-
ability of nasal epithelium was not reached, patients treated
with a ragweed allergen linked to CpG in a phase II study had
reduced peak-season rhinitis symptom scores during both the
first and second ragweed pollen seasons following treatment,
and reduced allergen-specific IgE levels [94]. However, fol-
lowing another phase II/III trial in which clinical improvement
did not reach significance in ragweed allergic patients [95],
this particular therapeutic was discontinued. A similar ap-
proach was taken for HDM allergy, whereby the allergen
was co-encapsulated with CpG in virus-like particles, show-
ing reduced symptoms and increased allergen-specific IgG in
a phase I/IIa study [96]. Additional phase II trials were then
conducted with these particles but without the allergen. In
these studies, symptom and medication scores improved
[97], and asthma control was maintained during steroid reduc-
tion in allergic asthma patients, suggesting that a general mod-
ified immune function of DCs would be sufficient to change
the development of allergen-specific T cell responses [98].
Although these types of adjuvant have shown efficacy in mul-
tiple clinical trials, it should be noted that efficacy is measured
in comparison with placebo and not standard AITwithout the
adjuvant, making it difficult to assess its added value.

Oral application of bacterial lysates has been used to pre-
vent respiratory tract infections for decades in middle-
European countries. OM-85 is used most often, which is an
extract of respiratory pathogenic bacteria [99]. Following the
oral route, they modulate immune responses in the intestines,
leading to increased immunematuration and immunity against
respiratory pathogens [100]. Recent studies suggest that bac-
terial lysates also reduce virus-induced wheezing episodes
with 30% in pre-school children with recurrent wheezing
[101, 102]. In older children with asthma, bacterial lysates
form an add-on therapy preventing disease exacerbations
[103]. It is unclear how long-lasting the effect is and whether
this spans over several seasons or years. Currently, the appli-
cation of bacterial lysates is being studied to prevent recurrent
wheezing and asthma in young infants [104].

Other adjuvants with immunoregulatory properties, as op-
posed to immunostimulatory properties, have also been con-
sidered. The risk of developing allergies has been correlated
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with low vitamin D levels [105]. Indeed, the active form of
vitamin D, 1,25dihydroxy vitamin D3 (Vitamin D3), has im-
munomodulatory properties. Vitamin D3 modulates the func-
tion of a wide range of immune cells, including DCs, macro-
phages, T lymphocytes, and B lymphocytes, resulting in a
regulatory response. In DCs that express the Vitamin D recep-
tor (VDR) constitutively, Vitamin D3 prevents the full matu-
ration of the cell, as well as the production of proinflammatory
cytokines, in favor of tolerance-associated molecules such as
ILT3 and IL-10. Furthermore, Vitamin D3 can repress OX40L
expression by DCs [106]. Due to these effects, Vitamin D3–
primed DCs induce regulatory T cells. Indeed, injection of
Vitamin D3 in a human explant model induces dermal DCs
with tolerogenic properties [105]. Furthermore, application of
Vitamin D3 together with AIT significantly potentiates the
beneficial in vivo tolerogenic responses in mouse models for
allergic asthma, such as reduced airway hyperreactivity, air-
way eosinophilia, serum IgE, and Th2 cell responses, together
with increased Treg cells and IL-10 in the lungs [107, 108]. In
a placebo-controlled, randomized trial with allergic rhinitis
patients, it was found that Vitamin D3 alleviates symptoms
of allergic rhinitis, in both adults and in children [109, 110].

Despite promising pre-clinical studies, the realization into
clinical efficacy can be difficult to achieve. The heterogenicity
of humans and the broad range of disease endotypes involved
in asthma are contributing factors to this, but in addition, the
primary outcome chosen may not always represent the true
efficacy of the drug. In many cases, subjective endpoints are
assessed, which may be more susceptible to the placebo effect
[111]. As discussed earlier, various DC subsets are involved in
antigen recognition and the initiation of an immune response.
Although many of the adjuvants discussed can induce a par-
ticular Th response, no specific DC subset is currently targeted
directly, which may substantially improve the induction of
more tolerogenic responses and down-modulation of pro-
allergic Th2-type responses.

Microbiome and “old friends”

It has been hypothesized that the rise in inflammatory diseases
such as asthma, in westernized areas in the past 50 years, is the
result of lifestyle changes and a reduced microbial exposure.
This may result in insufficient priming and education of the
neonatal immune system and subsequently, an increased risk
of inflammatory diseases (Hygiene Hypothesis [112]). One of
the earliest and most substantial microbial stimuli neonates
encounter is by the microbiome. A diminished diversity of
the microbiome composition, as a consequence antibiotic
use in the first year of life and lifestyle changes, is linked to
an increased risk of allergic diseases, such as asthma.

Multiple studies in both mice and humans have shown that
absence of specific strains in gut microbiota were linked to
increased (risk of) asthma development [113]. Furthermore,

distinct unfavorable profiles of lung microbiota are related to
specific endotypes of asthma [114–116]. Although supple-
mentation with one of these specific strains has not shown
strong evidence of preventing asthma [117], several compo-
nents derived from the microbiome, such as Sema4a, D-
tryptophan and short chain fatty acids, are being investigated
for their immunoregulatory effects and have shown positive
results in murine studies [34, 118–120]. Furthermore,
probiotics have been combined with peanut oral immunother-
apy showing sustained unresponsiveness (up to 4 years) to the
allergen in the treated group compared with placebo [121,
122]. Again, further studies are required to assess its effective-
ness over standard OIT.

Graham Rook has refined the hygiene hypothesis by intro-
ducing the term “old friends” to emphasize the crucial role of
certain micro- and macrobionts that the human species has co-
evolved with, while other (inhalant) pathogens or childhood
infections do not seem to be linked to this protective effect
[123]. These inhabiting “guests” can impose optimal immune
shaping, in particular on the innate and regulatory arm of the
immune system [123]. Examples of those “old friends” are
helminth parasites, hepatitis A virus, toxoplasma, and
Helicobacter pylori, a bacterium infecting the stomach, all
showing protective associations in epidemiological studies
with protection against the development of asthma
[123–125]. Different model systems have confirmed this and
revealed underlying immune mechanisms involving
tolerogenic functions of various immune cells, including
DCs, M2 macrophages, or regulatory T and B cells, which
then suppress the development of Th2 cell responses and al-
lergic inflammation [126]. Furthermore, helminth parasites,
such as Heligmosomoides polygyrus, also suppress and neu-
tralize allergic inflammation driven by innate cytokines pro-
duced by bronchial epithelium [127]. In population studies, it
was already suggested that infections at an early age have a
more dominant impact. Indeed, infection with H. pylori has
been shown to be protective in neonatal mice and to a lesser
extent in adults. The protective effect can even be transmitted
transmaternally: both for helminths, like schistosomes, and for
H. pylori [128, 129]. This effect was linked to skewing of
regulatory T cells over effector T cells and (de)methylation
of the Th2 cytokine genes versus the forkhead box P3
(FOXP3) locus [128, 129].

Interestingly, live infections are not necessary to suppress
the development of allergic airway disease. Application of a
lysate of H. pylori bacteria or secretory/excretory products of
H. polygyrus or Schistosoma mansoni eggs was equally effec-
tive in suppressing different features of allergic airway disease
[130–132]. For H. pylori lysate, this was also the case in
different therapeutic settings, making it more interesting to
investigate the potential application of a microbial derived
molecule for the treatment of asthma [133]. From both hel-
minth parasites as well as H. pylori, various molecules have
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been identified that can mimic the protective activity of a full
infection [134, 135]. For example,H. polygyrusHpARI [136],
ES-62 and AvCystatin from Acanthocheilonema viteae [134,
135], AIP-2 from hookworms [137], and H. pylori–derived
vaculating cytotoxin A (VacA) [138] and gamma glutamyl
transferase (ggt) [139] have also shown to suppress allergic
inflammation in different models [134]. In addition, other
molecules with a defined effect on the immune system have
been described, driving either Treg or Breg responses and
modifying DC function, such as H. polygyrus TGM [140],
S. mansoni omega-1 [49, 141] or IPSE [142]. Further research
is needed to assess these molecules as potential therapeutics
for the treatment of allergies and asthma in humans, and
whether these molecules can be incorporated in running AIT
protocols.

Early life immunity

In the search for novel therapeutics to treat or prevent the
development of allergic airway diseases, it is important to
consider the age of the target population. Allergy prevention
would require modulation of immune responses in early life.
Studies have shown that early life immunity differs from that
of adults, which must be taken into consideration in the de-
velopment of novel prevention and treatment approaches.
These differences are partly due to maternal imprinting of
the fetal immunity during its stay in the uterus, preventing
detrimental maternal immune responses, and partly because
the neonatal immune system is still immature and has not yet
reached its full potential.

Multiple studies have shown that there is a Th2/Treg bias in
early life. Several factors that contribute to this bias have been
identified in mice. Neonatal T cells produce IL-4 more readily
upon TCR stimulation than adult T cells, due to hypomethy-
lation of the Th2 cytokine regulatory region [143].
Furthermore, neonatal, but not adult, Th1 T cells express both
IL-13Ra1 and IL-4Ra, and undergo apoptosis when exposed
to IL-4 [144]. Neonatal DCs contribute to the early Th2 bias
through insufficient production of IL-12 compared with adult
DCs. Maturation of these DCs at day 6 after birth overcomes
this Th2 bias through increased production of IL-12 [145].
Enhanced Th2 responses in the neonate lung are also linked
to a hyperactive IL-33 axis in early life. Epithelial IL-33 is
unregulated after birth, resulting in an increase in ILC2s, eo-
sinophils, basophils, and mast cells during remodelling in the
developing lung. Exposure to allergen in this period results in
a further increase of IL-33 production and induction of a Th2
type response to allergens [146, 147]. Other factors maintain-
ing a Th2 bias after early life may also play a role. During the
first 2 weeks after birth, the lung is gradually colonized by
microbiota, which is associated with decreased allergen re-
sponsiveness and the emergence of Helios negative Treg cells,

dependent on PD-L1 for development. Dysregulation of the
formation of lung microbiota can therefore contribute to
sustained Th2 bias and increased risk of allergic airway in-
flammation in adulthood [148]. Indeed, in humans, gut- and
respiratory microbiota patterns at 2 months are associated with
recurrent respiratory tract infections in the first year and later
asthma development [149].

As a model for human neonatal immunity, cord blood cells
are often used. These studies have revealed decreased mono-
cyte and DC production of Th1-skewing cytokines IL-12 and
type 1 interferons at birth compared with adults. Conversely,
these cells produce as much or more IL-1β, IL-6, IL-23, and
IL-10 compared with adult cells, supporting Th17- and Th2-
type immunity [150, 151]. Differences between allergic and
non-allergic infants in the further development of their im-
mune system have also been observed. Non-allergic infants
show progressive and significant age-related increases in
TLR-induced innate cytokine production (IL-1β, IL-6,
TNF-α, and IL-10) from birth to 5 years of age, with a parallel
increase in adaptive Th1 cell responses. Allergic infants, in
contrast, showed a relative decrease in these responses
[152]. Although cord blood samples provide the easiest access
to neonatal immune cells, a recent study using mass-
cytometry showed that cord blood measurements are not pre-
dictive of postnatal immunity. In total, 15 of 21 immune cells,
including cDC and pDC, measured in cord blood did not
correlate with those measured in peripheral blood at 1 week
after birth. Furthermore, cord blood values also differed from
peripheral blood values taken at birth, implying that there are
tissue differences between cord and peripheral blood as well
as continuous changes over time [153]. In fact, the data re-
vealed marked changes in immune components from birth to
3 months and followed a stereotypic pattern for all 100 chil-
dren within the study, which was not predictable from cord
blood measurements. The immunological changes detected
were linked to interaction with microbes and found to be ham-
pered in children with gut bacterial dysbiosis. Ultimately,
these types of studies, with careful consideration of the source
of cells, should help to identify immune gaps and (microbial)
adjuvants as targets to set-up preventative DC-based therapies
in children at risk for allergic disease.

Concluding remarks

Fundamental research in pre-clinical models of allergic asth-
ma has paved the way for the development of biologicals
targeting key Th2-type responses (Fig. 1). These drugs form
a break-through as they offer a solution for specific endotypes
of patients with severe and steroid-resistant asthma. However,
these biologicals only target effector molecules at the end of
the inflammatory cascade and therefore do not have the ca-
pacity to cure the disease.
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Further upstream interference in the inflammatory cascade
may have the ability to not only dampen downstream effector
responses but also redirect those responses towards a more
tolerogenic profile. Novel therapeutics based on microbial adju-
vants that target DC function, form promising candidates, as DCs
determine the fate of effector versus tolerogenic T cell responses.
Studies so far show that DCs are a heterogeneous group of cells,
consisting of several subsets with very diverse immune-driving
abilities, an activity which is very plastic and depends not only on
the subset, the (mucosal) tissue location, but also on the signals
they encounter in the micro-environment. Although markers so
far used to distinguish different DC subsets in mice and humans
were different, the functions and behavior of thoseDC subsets are
relatively similar across species, which is helpful in determining
the role of the different DC subsets through fundamental research.

A few of the initiatives applying microbial, DC-targeting ad-
juvants, have shown some encouraging results (Fig. 1), though
proof of principle in larger patient groups seems more difficult to

reach. This may again suggest that these treatments are mostly
effective in subgroups of patients. However, until now, delivery
systems to those DC subsets more crucially involved in the ini-
tiation of allergic responses have not been explored, nor has the
choice of adjuvant been geared towards those that preferentially
act on specific and relevant DC subsets. In addition, since im-
mune tolerance to achieve prevention of allergic diseases would
preferably be induced early in life, and since DCs from infants
may respond slightly differently, it would be important to also
explore those adjuvants that are able to modulate DC function in
early life. Regarding the choice of DC-targeting adjuvants, it
would be interesting to follow some of the new developments
in the cancer field [154], where substantial efforts have been
made to developDC-targeting therapies. An important difference
is, however, that in cancer, the goal of such therapies is to activate
DC function, while in asthmaDC-targeting therapy is to establish
a more tolerogenic activity. Nevertheless, crossing border activ-
ities between different disease areas would help advance DC-

Fig. 1 Allergen-inducedTh2-typeresponseandtargetsforintervention/
modulation. During sensitization, immature dendritic cells (iDC) en-
counter allergens at the epithelial barrier of mucosal tissue. Upon allergen
uptake, DC mature and migrate to the lymph node to induce differential
and clonal expansion of allergen-specific Th2 cells from naive CD4+ T
cells (nT). Th2 cell polarization can be facilitated by alarmins (TSLP, IL-
33, IL-25) produced by disrupted epithelial cells, which induce OX40L
upregulation onDC and activate ILC2s to produce Th2-type cytokines. In
the lymph node, Th2-primed T cells produce IL-4 and IL-13 which initi-
ates immunoglobulin class switching in allergen-specific naive B cells
(nB), resulting in allergen-specific IgE producing plasma cells and IgE+

memory B cells. Upon subsequent allergen encounter (challenge), mast
cells and basophils are activated through cross-linking of FceRI by
allergen-specific IgE, producing inflammatory mediators responsible for

the early phase allergic response. A late-phase response is initiated upon
infiltration of additional effector cells to the site of allergen encounter. The
Th2-type response to the allergen is further maintained and reinforced by
stimulated allergen-specific Th2 cells. Interventions mediated by biolog-
icals (monoclonal antibodies; mAb) and therapies designed to modulate
the immune response (on the right) are indicated in red. Intervention is
achieved through blocking of IgE, Th2 cytokines (IL-4, IL-5, IL-13), and/
or their receptors. Intervention earlier in the Th2-type cascade could be
achieved by blocking alarmins or costimulatory receptors such as OX40L
and ICOSL. Modulation involves redirection from a Th2- to a regulatory-
and/or Th1-type immune response. Interventions/modulatory therapies in
pre-clinical stage are indicated withΔ, those in clinical trials are indicated
with *, and those already registered for use are underlined

Semin Immunopathol (2020) 42:95–110 103



targeting therapy for asthma and result in novel avenues for the
development of DC-targeting therapies.
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