34 research outputs found

    What orthopaedic surgery residents need to know about the hand and wrist?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To develop a Core Curriculum for Orthopaedic Surgery; and to conduct a national survey to assess the importance of curriculum items as judged by orthopaedic surgeons with primary affiliation non-academic. Attention for this manuscript was focused on determining the importance of topics pertaining to adult hand and wrist reconstruction.</p> <p>Methods</p> <p>A 281-item questionnaire was developed and consisted of three sections: 1) Validated Musculoskeletal Core Curriculum; 2) Royal College of Physician and Surgeons of Canada (RCPSC) Specialty Objectives and; 3) A procedure list. A random group of 131 [out of 156] orthopaedic surgeons completed the questionnaire. Data were analyzed descriptively and quantitatively using histograms, a Modified Hotel ling's T<sup>2</sup>-statistic <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> with p-value determined by a permutation test, and the Benjamini-Hochberg/Yekutieli procedure</p> <p>Results</p> <p>131/156 (84%) orthopaedic surgeons participated in this study. 27/32 items received an average mean score of at least 3.0/4.0 by all respondents thus suggesting that 84% of the items are either "probably important" or "important" to know by the end of residency (SD range 0.007–0.228). The Benjamini-Hochberg procedure demonstrated that for 80% of the 32 × 31/2 = 496 possible pairs of hand and wrist questions did not appear to demonstrate the same distribution of ratings given that one question was different from that of another question.</p> <p>Conclusion</p> <p>This study demonstrates with reliable statistical evidence, agreement on the importance of 27/32 items pertaining to hand and wrist reconstruction is included in a Core Curriculum for Orthopaedic Surgery. Residency training programs need ensure that educational opportunities focusing on the ability to perform with proficiency procedures pertaining to the hand and wrist is taught and evaluated in their respective programs.</p

    Probing Cellular Dynamics with a Chemical Signal Generator

    Get PDF
    Observations of material and cellular systems in response to time-varying chemical stimuli can aid the analysis of dynamic processes. We describe a microfluidic “chemical signal generator,” a technique to apply continuously varying chemical concentration waveforms to arbitrary locations in a microfluidic channel through feedback control of the interface between parallel laminar (co-flowing) streams. As the flow rates of the streams are adjusted, the channel walls are exposed to a chemical environment that shifts between the individual streams. This approach can be used to probe the dynamic behavior of objects or substances adherent to the interior of the channel. To demonstrate the technique, we exposed live fibroblast cells to ionomycin, a membrane-permeable calcium ionophore, while assaying cytosolic calcium concentration. Through the manipulation of the laminar flow interface, we exposed the cells' endogenous calcium handling machinery to spatially-contained discrete and oscillatory intracellular disturbances, which were observed to elicit a regulatory response. The spatiotemporal precision of the generated signals opens avenues to previously unapproachable areas for potential investigation of cell signaling and material behavior

    HIV Envelope gp120 Activates LFA-1 on CD4 T-Lymphocytes and Increases Cell Susceptibility to LFA-1-Targeting Leukotoxin (LtxA)

    Get PDF
    The cellular adhesion molecule LFA-1 and its ICAM-1 ligand play an important role in promoting HIV-1 infectivity and transmission. These molecules are present on the envelope of HIV-1 virions and are integral components of the HIV virological synapse. However, cellular activation is required to convert LFA-1 to the active conformation that has high affinity binding for ICAM-1. This study evaluates whether such activation can be induced by HIV itself. The data show that HIV-1 gp120 was sufficient to trigger LFA-1 activation in fully quiescent naïve CD4 T cells in a CD4-dependent manner, and these CD4 T cells became more susceptible to killing by LtxA, a bacterial leukotoxin that preferentially targets leukocytes expressing high levels of the active LFA-1. Moreover, virus p24-expressing CD4 T cells in the peripheral blood of HIV-infected subjects were found to have higher levels of surface LFA-1, and LtxA treatment led to significant reduction of the viral DNA burden. These results demonstrate for the first time the ability of HIV to directly induce LFA-1 activation on CD4 T cells. Although LFA-1 activation may enhance HIV infectivity and transmission, it also renders the cells more susceptible to an LFA-1-targeting bacterial toxin, which may be harnessed as a novel therapeutic strategy to deplete virus reservoir in HIV-infected individuals

    A mouse model reproducing the pathophysiology of neonatal group B streptococcal infection

    Get PDF
    Group B streptococcal (GBS) meningitis remains a devastating disease. The absence of an animal model reproducing the natural infectious process has limited our understanding of the disease and, consequently, delayed the development of effective treatments. We describe here a mouse model in which bacteria are transmitted to the offspring from vaginally colonised pregnant females, the natural route of infection. We show that GBS strain BM110, belonging to the CC17 clonal complex, is more virulent in this vertical transmission model than the isogenic mutant BM110∆cylE, which is deprived of hemolysin/cytolysin. Pups exposed to the more virulent strain exhibit higher mortality rates and lung inflammation than those exposed to the attenuated strain. Moreover, pups that survive to BM110 infection present neurological developmental disability, revealed by impaired learning performance and memory in adulthood. The use of this new mouse model, that reproduces key steps of GBS infection in newborns, will promote a better understanding of the physiopathology of GBS-induced meningitis.The authors gratefully acknowledge the help of Encarnaca̧ ̃o Ribeiro for excellent technical assistance, Joana Tavares for assisting with IVIS Lumina LT, Susana Roque for the luminex instrument experiments, the Molecular Microbiology group at i3S for microscope use, and the Portuguese architect and artist Gil Ferreira da Silva for the artworks included in the last figure. This work was supported by funds from Foundation for Science and Technology (FCT), European Regional Development Fund (FEDER) and Compete under project POCI-01-0145-FEDER-016607 (PTDC/IMI-MIC/1049/2014) and from the project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). T.S. and A.M. were supported by Investigador FCT (IF/00875/2012 and IF/00753/2014), POPH and Fundo Social Europeu. E.B.A. and C.C.P. hold postdoctoral fellowships from FCT (PTDC/IMI-MIC/1049/2014 and SFRH/BPD/91962/2012). Ar.F. and P.T.C. were supported by Laboratoire d’Excellence (LABEX) Integrative Biology of Emerging Infectious Diseases (grant ANR-10-LABX-62-IBEID).info:eu-repo/semantics/publishedVersio

    Epigenetic Regulation of HIV-1 Latency by Cytosine Methylation

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) persists in a latent state within resting CD4+ T cells of infected persons treated with highly active antiretroviral therapy (HAART). This reservoir must be eliminated for the clearance of infection. Using a cDNA library screen, we have identified methyl-CpG binding domain protein 2 (MBD2) as a regulator of HIV-1 latency. Two CpG islands flank the HIV-1 transcription start site and are methylated in latently infected Jurkat cells and primary CD4+ T cells. MBD2 and histone deacetylase 2 (HDAC2) are found at one of these CpG islands during latency. Inhibition of cytosine methylation with 5-aza-2′deoxycytidine (aza-CdR) abrogates recruitment of MBD2 and HDAC2. Furthermore, aza-CdR potently synergizes with the NF-κB activators prostratin or TNF-α to reactivate latent HIV-1. These observations confirm that cytosine methylation and MBD2 are epigenetic regulators of HIV-1 latency. Clearance of HIV-1 from infected persons may be enhanced by inclusion of DNA methylation inhibitors, such as aza-CdR, and NF-κB activators into current antiviral therapies

    Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Get PDF
    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway
    corecore