7 research outputs found

    Regulation of cardiac nitric oxide synthase in acute type I diabetes: Modulation of L-arginine availability and arginase activity

    No full text
    The aim of our study was to characterize the acute effects of streptozotocin-induced diabetes on the regulation of cardiac endothelial and inducibile nitric oxide synthase and related signaling pathways. Over the past decade, it has become increasing apparent that competition between the nitric oxide synthase and arginase pathways for L-arginin limits nitric oxid production. Imbalance between these pathways may contribute to heart disfunction especially in diabetes. To evaluate the role of insulin in regulation of endothelial and inducible nitric oxide synthase through phosphatidylinositol 3-kinase/protein kinase B and extracellular signaling-regulated kinase 1 and 2 signaling pathways, male Wistar rats were injected with streptozotocin (65 mg/kg i.p.). Diabetic animals were either maintained untreated for 2 weeks or treated with insulin (3 IU/animal s.c.) for seven days. The arginase activity in diabetic rat heart was augmented, followed by reduction of L-arginine. Insulin treatment significantly decreased arginase activity in heart but it still remained high compare to control rats. Diabetes and insulin treatment did not change endothelial nitric oxide synthase protein and mRNA expression in the heart. In contrast, phosphorylation of endothelial nitric oxide synthase was decreased in diabetic rats and insulin restored it to the control level. Insulin treatment caused increase in inducibile nitric oxide synthase mRNA content. Protein and mRNA expression of cardiac protein kinase B were not altered in diabetic and insulin treated rats, but protein kinase B phosphorylation was lower in diabetes and restored after insulin administration. In addition, insulin deficiency significantly decreases extracellular signaling-regulated kinase 1 and 2 phosphorylation in the heart and insulin treatment partially ameliorates this decline. These data suggest that in the early stage of diabetes arginase is markedly induced in heart and increased arginase activity preceded alterations of inducibile nitric oxide synthase expression/activity

    New spectrofluorimetric method for the determination of nizatidine in bulk form and in pharmaceutical preparations

    No full text
    A simple, accurate and highly sensitive spectrofluorimetric method has been developed for determination of nizatidine in pure form and in pharmaceutical dosage forms. The method is based on the reaction between nizatidine and 1-dimethylaminonaphthalene-5-sulphonyl chloride in carbonate buffer, pH 10.5, to yield a highly fluorescent derivative peaking at 513 nm after excitation at 367 nm. Various factors affecting the fluorescence intensity of nizatidin-dansyl derivative were studied and conditions were optimized. The method was validated as per ICH guidelines. The fluorescence concentration plot was rectilinear over the range of 25-300 ng/mL. Limit of detection and limit of quantification were calculated as 11.71 and 35.73 ng/mL, respectively. The proposed method was successfully applied to pharmaceutical preparations

    Gender Differences in the Expression and Cellular Localization of Lipin 1 in the Hearts of Fructose-Fed Rats

    No full text
    To give new insight to alterations of cardiac lipid metabolism accompanied by a fructose-rich diet (FRD), rats of both sexes were exposed to 10 % fructose in drinking water during 9 weeks. The protein level and subcellular localization of the main regulators of cardiac lipid metabolism, such as lipin 1, peroxisome proliferator-activated receptor alpha (PPAR alpha), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha), carnitine palmitoyltransferase I (CPTI), and CD36 were studied. Caloric intake in fructose-fed rats (FFR) of both sexes was increased. Circulating triacylglyceroles (TAG) and non-esterified fatty acids were increased in male FFR, while females increased visceral adiposity and blood TAG. Total expression of lipin 1 in cardiac cell lysate and its cytosolic and microsomal level were increased in the hearts of male FFR. PPAR alpha and PGC-1 alpha content were decreased in the nuclear extract. In addition, cardiac deposition of TAG in male FFR was elevated, as well as inhibitory phosphorylation of insulin receptor substrate 1 (IRS-1). In contrast, in female FFR, lipin 1 level was increased in nuclear extract only, while overall CPTI expression and phosphorylation of IRS-1 at serine 307 were decreased. The results of our study suggest that fructose diet causes gender-dependent alterations in cardiac lipid metabolism. Potentially detrimental effects of FRD seem to be limited to male rats. Most of the observed changes might be a consequence of elevated expression and altered localization of lipin 1. Increased inhibitory phosphorylation of IRS-1 is possible link between cardiac lipid metabolism and insulin resistance in FFR

    Pharmaceuticals and Related Drugs

    No full text
    corecore