808 research outputs found

    Planning When Goals Change: A Moving Target Search Approach

    No full text
    International audienceDevising intelligent robots or agents that interact with humans is a major challenge for artificial intelligence. In such contexts, agents must constantly adapt their decisions according to human activities and modify their goals. In this paper, we tackle this problem by introducing a novel planning approach, called Moving Goal Planning (MGP), to adapt plans to goal evolutions. This planning algorithm draws inspiration from Moving Target Search (MTS) algorithms. In order to limit the number of search iterations and to improve its efficiency, MGP delays as much as possible triggering new searches when the goal changes over time. To this purpose, MGP uses two strategies: Open Check (OC) that checks if the new goal is still in the current search tree and Plan Follow (PF) that estimates whether executing actions of the current plan brings MGP closer to the new goal. Moreover, MGP uses a parsimonious strategy to update incrementally the search tree at each new search that reduces the number of calls to the heuristic function and speeds up the search. Finally, we show evaluation results that demonstrate the effectiveness of our approach

    Neural progenitor cell implants modulate vascular endothelial growth factor and brain-derived neurotrophic factor expression in rat axotomized neurons

    Get PDF
    Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might contribute to the restorative effects of these implants

    Phase Transition in the Number Partitioning Problem

    Full text link
    Number partitioning is an NP-complete problem of combinatorial optimization. A statistical mechanics analysis reveals the existence of a phase transition that separates the easy from the hard to solve instances and that reflects the pseudo-polynomiality of number partitioning. The phase diagram and the value of the typical ground state energy are calculated.Comment: minor changes (references, typos and discussion of results

    Random Costs in Combinatorial Optimization

    Full text link
    The random cost problem is the problem of finding the minimum in an exponentially long list of random numbers. By definition, this problem cannot be solved faster than by exhaustive search. It is shown that a classical NP-hard optimization problem, number partitioning, is essentially equivalent to the random cost problem. This explains the bad performance of heuristic approaches to the number partitioning problem and allows us to calculate the probability distributions of the optimum and sub-optimum costs.Comment: 4 pages, Revtex, 2 figures (eps), submitted to PR

    Optimal combinations of imperfect objects

    Full text link
    We address the question of how to make best use of imperfect objects, such as defective analog and digital components. We show that perfect, or near-perfect, devices can be constructed by taking combinations of such defects. Any remaining objects can be recycled efficiently. In addition to its practical applications, our `defect combination problem' provides a novel generalization of classical optimization problems.Comment: 4 pages, 3 figures, minor change

    Entropy-based analysis of the number partitioning problem

    Full text link
    In this paper we apply the multicanonical method of statistical physics on the number-partitioning problem (NPP). This problem is a basic NP-hard problem from computer science, and can be formulated as a spin-glass problem. We compute the spectral degeneracy, which gives us information about the number of solutions for a given cost EE and cardinality mm. We also study an extension of this problem for QQ partitions. We show that a fundamental difference on the spectral degeneracy of the generalized (Q>2Q>2) NPP exists, which could explain why it is so difficult to find good solutions for this case. The information obtained with the multicanonical method can be very useful on the construction of new algorithms.Comment: 6 pages, 4 figure

    Statins, bone, and neurofibromatosis type 1

    Get PDF
    Neurofibromatosis type 1 (NF1) is a dominantly inherited multi-system disorder. Major features include pigmentary abnormalities, benign tumors of the nerve sheath (neurofibromas), malignant tumors, learning disabilities, and skeletal dysplasia. The NF1 gene functions as a tumor suppressor, but haploinsuffiency probably accounts for some aspects of the non-tumor phenotype. The protein product, neurofibromin, is a Ras GTPase-activating protein, and various Ras pathway inhibitors are being tested in preclinical models and clinical trials for effectiveness in treating NF1 complications. This month in BMC Medicine, a paper by Kolanczyk et al describes a preclinical mouse model for tibial dysplasia and provides evidence that the drug lovastatin – in use to treat cardiovascular disease – may be beneficial, opening the door to clinical trials in humans

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table
    • …
    corecore