52 research outputs found
EASIX for Prediction of Outcome in Hospitalized SARS-CoV-2 Infected Patients
Background: The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has evoked a pandemic that challenges public health-care systems worldwide. Endothelial cell dysfunction plays a key role in pathophysiology, and simple prognosticators may help to optimize allocation of limited resources. Endothelial activation and stress index (EASIX) is a validated predictor of endothelial complications and outcome after allogeneic stem cell transplantation. Aim of this study was to test if EASIX could predict life-threatening complications in patients with COVID-19.
Methods: SARS-CoV-2-positive, hospitalized patients were enrolled onto a prospective non-interventional register study (n=100). Biomarkers were assessed at hospital admission. Primary endpoint was severe course of disease (mechanical ventilation and/or death, V/D). Results were validated in 126 patients treated in two independent institutions.
Results: EASIX at admission was a strong predictor of severe course of the disease (odds ratio for a two-fold change 3.4, 95%CI 1.8-6.3, p<0.001), time to V/D (hazard ratio (HR) for a two-fold change 2.0, 95%CI 1.5-2.6, p<0.001) as well as survival (HR for a two-fold change 1.7, 95%CI 1.2-2.5, p=0.006). The effect was retained in multivariable analysis adjusting for age, gender, and comorbidities and could be validated in the independent cohort. At hospital admission EASIX correlated with increased suppressor of tumorigenicity-2, soluble thrombomodulin, angiopoietin-2, CXCL8, CXCL9 and interleukin-18, but not interferon-alpha.
Conclusion: EASIX is a validated predictor of COVID19 outcome and an easy-to-access tool to segregate patients in need for intensive surveillance
EASIX for Prediction of Outcome in Hospitalized SARS-CoV-2 Infected Patients
BackgroundThe coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has evoked a pandemic that challenges public health-care systems worldwide. Endothelial cell dysfunction plays a key role in pathophysiology, and simple prognosticators may help to optimize allocation of limited resources. Endothelial activation and stress index (EASIX) is a validated predictor of endothelial complications and outcome after allogeneic stem cell transplantation. Aim of this study was to test if EASIX could predict life-threatening complications in patients with COVID-19.MethodsSARS-CoV-2-positive, hospitalized patients were enrolled onto a prospective non-interventional register study (n=100). Biomarkers were assessed at hospital admission. Primary endpoint was severe course of disease (mechanical ventilation and/or death, V/D). Results were validated in 126 patients treated in two independent institutions.ResultsEASIX at admission was a strong predictor of severe course of the disease (odds ratio for a two-fold change 3.4, 95%CI 1.8-6.3, p<0.001), time to V/D (hazard ratio (HR) for a two-fold change 2.0, 95%CI 1.5-2.6, p<0.001) as well as survival (HR for a two-fold change 1.7, 95%CI 1.2-2.5, p=0.006). The effect was retained in multivariable analysis adjusting for age, gender, and comorbidities and could be validated in the independent cohort. At hospital admission EASIX correlated with increased suppressor of tumorigenicity-2, soluble thrombomodulin, angiopoietin-2, CXCL8, CXCL9 and interleukin-18, but not interferon-alpha.ConclusionEASIX is a validated predictor of COVID19 outcome and an easy-to-access tool to segregate patients in need for intensive surveillance
EASIX and severe endothelial complications after CD19-directed CAR-T Cell therapy-a cohort study
BACKGROUND: Endothelial dysfunction is associated with two main complications of chimeric antigen receptor T (CAR-T) cell therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). This study evaluates the Endothelial Activation and Stress Index (EASIX) as a prognostic marker for high-grade CRS and ICANS in patients treated with CD19-directed CAR-T cells. METHODS: In this retrospective study, a training cohort of 93 patients from the ZUMA-1 trial and a validation cohort of 121 patients from two independent centers (University Hospital Heidelberg, Charité University Medicine Berlin) were investigated. The primary objective was to assess the predictive capacity of EASIX measured immediately before the start of lymphodepletion (EASIX-pre) for the occurrence of grade =3 CRS and/or ICANS. To explore a possible endothelial link, serum levels of endothelial stress markers (angiopoietin-2, suppressor of tumorigenicity-2, soluble thrombomodulin, and interleukin-8) were determined before lymphodepletion and on day 7 after CART infusion in the validation cohort (n = 47). RESULTS: The prognostic effect of EASIX-pre on grade =3 CRS and/or ICANS was significant in the training cohort [OR 2-fold increase 1.72 (1.26-2.46)] and validated in the independent cohort. An EASIX-pre cutoff >4.67 derived from the training cohort associated with a 4.3-fold increased odds ratio of severe CRS/ICANS in the independent cohort. Serum endothelial distress markers measured on day+7 correlated with EASIX-pre and associated with severe complications. CONCLUSIONS: EASIX-pre is a powerful predictor of severe CRS/ICANS after CD19-directed CART therapy and might be used as a basis for risk-adapted prevention strategies
Treatment of adult ALL patients with third-generation CD19-directed CAR T cells: results of a pivotal trial
BACKGROUND: Third-generation chimeric antigen receptor (CAR)-engineered T cells (CARTs) might improve clinical outcome of patients with B cell malignancies. This is the first report on a third-generation CART dose-escalating, phase-1/2 investigator-initiated trial treating adult patients with refractory and/or relapsed (r/r) acute lymphoblastic leukemia (ALL). METHODS: Thirteen patients were treated with escalating doses of CD19-directed CARTs between 1 × 106 and 50 × 106 CARTs/m2. Leukapheresis, manufacturing and administration of CARTs were performed in-house. RESULTS: For all patients, CART manufacturing was feasible. None of the patients developed any grade of Immune effector cell-associated neurotoxicity syndrome (ICANS) or a higher-grade (≥ grade III) catokine release syndrome (CRS). CART expansion and long-term CART persistence were evident in the peripheral blood (PB) of evaluable patients. At end of study on day 90 after CARTs, ten patients were evaluable for response: Eight patients (80%) achieved a complete remission (CR), including five patients (50%) with minimal residual disease (MRD)-negative CR. Response and outcome were associated with the administered CART dose. At 1-year follow-up, median overall survival was not reached and progression-free survival (PFS) was 38%. Median PFS was reached on day 120. Lack of CD39-expression on memory-like T cells was more frequent in CART products of responders when compared to CART products of non-responders. After CART administration, higher CD8 + and γδ-T cell frequencies, a physiological pattern of immune cells and lower monocyte counts in the PB were associated with response. CONCLUSION: In conclusion, third-generation CARTs were associated with promising clinical efficacy and remarkably low procedure-specific toxicity, thereby opening new therapeutic perspectives for patients with r/r ALL. Trial registration This trial was registered at www.clinicaltrials.gov as NCT03676504
Eur. J. Biochem
Pseudomonas aeruginosa produces a pathogenic factor, the 29-kDa port-forming protein cytotoxin. Nonspecific oligomers of cytotoxin up to the hexamer, induced by oxidative crosslinking or detergent micellae, were based on intermolecular disulfide bridges. SDS induced tetramer, hexamer and mainly pentamers that were resistant to reducing conditions, indicating an additional oligomerization mechanism. Functional oligomerization after incubation with different membranes resulted in an oligomer of approximately 145 kDa that was identified as the pentamer by comparison with the SDS-induced oligomers. Covalent modification with diethylpyrocarbonate showed that histidine residues are indispensable for functional pentamerization. Pentamer formation was not influenced by the lipid composition of the liposomes tested, indicating that rising membrane fluidity did not increase oligomerization. The secondary structure of cytotoxin determined by spectroscopy is characterized by approximately 50% beta-sheet, 20% beta-turn, 10% alpha-helix and 20% remaining structure. Contact with detergent micellae or liposomes induced a reorganization of beta-structure associations, as observed by attenuated total reflection-Fourier transform infrared spectroscopy. Electron microscopy and principle component analysis of the cytotoxin monomer demonstrated a tapered molecule of 11 nm in length and a maximum width of 3.5 nm. These results classify the cytotoxin as a pore-forming toxin, rich in antiparallel beta-structure, that needs to oligomerize and inserts into membranes; it is very similar to the Staphylococcus aureus alpha-toxin. [References: 45
l -Glutamate biosensor for estimation of the taste of tomato specimens
Abstract An amperometric biosensor has been developed for measurement of Umami, or the taste based on the amount of l-glutamate, in tomato foods. The biosensor is based on an enzyme-mediator system in which l-glutamate oxidase is used for biochemical oxidation of l-glutamate and a tetrafulvalene-tetracyanoquinodimethane (TTF-TCNQ) paste, prepared from the mixture of TTF-TCNQ salt, graphite powder, and silicone oil, serves as the mediator. The limit of detection, calculated by use of a four-parameter logistic model, was 0.05 mmol L-1, and the limit of quantification was 0.15 mmol L-1. The correlation coefficient (R 2) was 0.990 and the relative standard deviation was no more than 1% (n=5). The response time (t 95) was 20–50 s, depending on concentration. The repeatability of the sensor was better than 5% (n=10). The sensor developed was stable for more than ten days
Practical recommendations for fertility preservation in women by the FertiPROTEKT network. Part II: fertility preservation techniques.
PURPOSE
In addition to guidelines focusing on scientific evidence, practical recommendations on fertility preservation are also needed.
METHODS
A selective literature search was performed based on the clinical and scientific experience of the authors. This article (Part II) focuses on fertility preservation techniques. Part I, also published in this journal, provides information on disease prognosis, disease-specific therapy, and risks for loss of fertility.
RESULTS
Ovarian stimulation including double stimulation and freezing of oocytes is the best-established therapy providing live birth chances in women < 35 years with high ovarian reserve of around 30-40%. Ovarian tissue freezing is especially useful in young women with good ovarian, if spontaneous conception is favoured and if < 1 week until chemotherapy is provided. Data on success rates are still limited, but this further evolving technique will possibly reach similar success rates as ovarian stimulation. GnRH agonists seem to reduce the risk of premature ovarian failure up to 50%; however, the effect is possibly not long-lasting. Ovarian transposition can easily be combined with freezing of ovarian tissue and is the preferred technique before pelvic radiotherapy. Other techniques, such as in vitro maturation, are limited to women with high ovarian reserve and remain less effective. In addition, procedures such as in vitro growth of follicles, etc. are still experimental.
CONCLUSIONS
Fertility preservation in women provides realistic chances of becoming pregnant. The choice of technique needs to be based on the time required, the woman's age, its risks and efficacy, and the individual preference of the patient
- …